

MOBILE RADIO NETWORK OPTIMIZATION

PoC (Proof of Concept) - Audit and Optimization

AUDIT

This report will include an audit of the main RF parameters on the Mobile Network based on the snapshot file(s) extracted from the real network. The following basic outputs are provided:

- 1) Mapping of the Mobile Network (Sites + Cells + Neighbors) into MapInfo + Google Earth
- 2) Summary + detailed Cell's main RF Parameters + Neighbors declarations (reciprocity, distance, etc)
- 3) Inconsistency cells declarations detected (discrepancies)
- 4) Comparison between the existing Neighbors declarations and ANR proposed by Agileto (tables and maps)
- 5) BCCH/PSC/PCI conflict detections (tables + maps) + recommendation proposals

OPTIMISATION

This report will include the results based on the basic drive tests (+ OSS KPIs / counters / call trace up to the options provided by each vendor). The following basic outputs are provided:

- 1) Drive Test route + Coverage & Quality (Top1 to TopX best servers detected) with mapping in into MapInfo + Google Earth
- 2) Neighbors analysis (Detected / Missing / Redundant) + HO traffic flow weight (tables and maps)
- Over-shooters + Polluted areas
- 4) Cell's Coverage efficiency (Top1 / ASet / Full)
- 5) BCCH/PSC/PCI conflict detections (tables + maps) + recommendation proposals
- 6) Automatic Cross feeder/sector detections (tables + maps)
- 7) (Re)play mobile links to cells in ASet (3dB below Top1) along the Drive Test route (Google Earth)

<u>Notice</u>: **This** PoC **process is similar for all technologies (2G/3G/4G/5G)** although this presentation may use as example data occasionally from a specific technology.

Agenda

- Introduction: Context, Inputs and Deliverables
- Geo-spatial representation of the Network/Cluster
- Cluster Audit & Sanity Check (RF main param + Neighbors + Discrepancy)
- Automatic best Neighboring evaluation (missing detected)
- Drive Test (DT) Analysis and Optimization

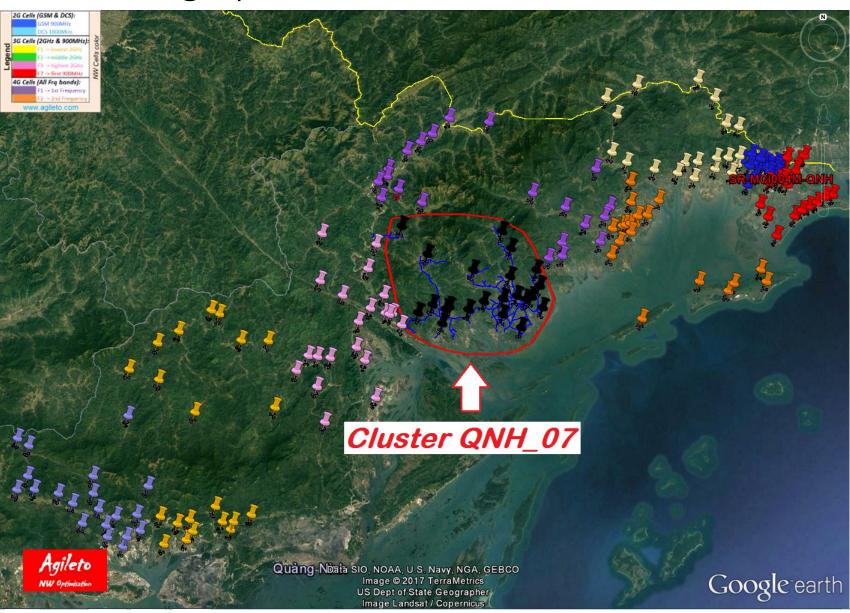
Inputs and deliverable

Inputs:

- Geodatabase of network encompassing the cluster under study:
 - > Sites/Cells Coordinates in WGS 84 in CSV or tabular format
 - > Antenna configurations per technology (2G, 3G, 4G & 5G): height, azimuth, tilt (mech + elec)...
- RNC configurations of the 3G cluster: Ericsson 3G *.xml dump OSS file(s) on 01.11.202X
- BSC dump of the 2G cluster: Ericsson 2G *.log dump OSS file(s) on 01.11.202X
- Drive test log files (POST-Swap) on time period from 27.10.202X to 28.10.202X (Scanner 3G)

Outputs:

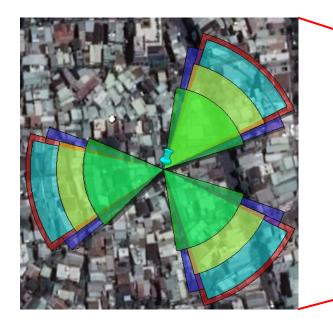
- GIS representation of the 2G, 3G, 4G & 5G clusters in MapInfo & Google earth formats
- Cluster Audit & Sanity check (main RF parameters + neighbors + discrepancies)
- Automatic best neighboring evaluation (based only on Cells positions Lat/Long + azimuths)
- Drive Test route analysis, optimization & presentations in MapInfo & Google earth formats
- Recommendations:
 - Neighbors proposals (missing + detected)
 - Over-shooters detections
 - Polluted areas (Investigations)
 - Cells Coverage efficiency
 - PSC audit and optimization
 - Automatic Cross Feeders/Sectors detections


Agenda

- Introduction: Context, Inputs and Deliverables
- Geo-spatial representation of the Network/Cluster
- Cluster Audit & Sanity Check (RF main param + Neighbors + Discrepancy)
- Automatic best Neighboring evaluation (missing detected)
- Drive Test (DT) Analysis and Optimization

Geographical cluster distribution

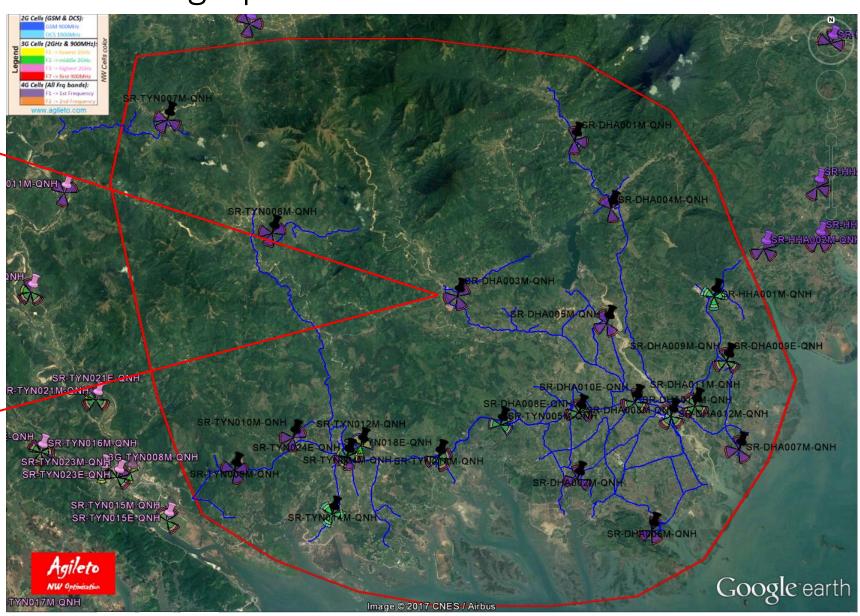
Cluster QNH_07


General Overview

Powered by <u>www.agileto.com</u>

Geographical cluster distribution

➤ Geographical distribution of the 2G, 3G cells related to the cluster

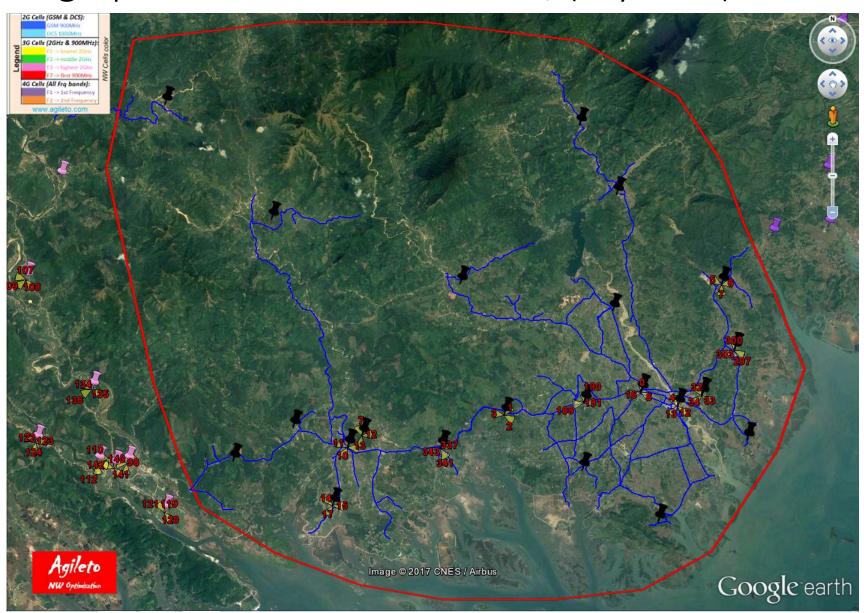


<u>Layers color Legend</u>:

3G: **F1**, **F2** (2100MHz)

3G: **F7** (900MHz)

2G: 900, 1800



3G Geographical cluster distribution, (Layer F1)

- ➤ Cells/Sites distribution of the DT cluster under study:
- Nbr of 2G sites: 22
- Nbr of 3G sites: 22
- Nbr of cells per band:
 - 2G-900 = 60
 - 2G-1800 = 6
 - 3G-F1 = 33
 - 3G-F2 = 33
 - 3G-F7 = 54

<u>NB</u>:

For this entire report, only the 3G cells related to the cluster layer F1 2100MHz band (UARFCN = 10788) will be considered!

Agenda

- Introduction: Context, Inputs and Deliverables
- Geo-spatial representation of the Network/Cluster
- Cluster Audit & Sanity Check (RF main param + Neighbors + Discrepancy)
- Automatic best Neighboring evaluation (missing detected)
- Drive Test (DT) Analysis and Optimization

Cluster Audit & Sanity check (summary)

Below is presented a sample concerning the first **cells** from the Audit & Sanity check summary analysis for the cluster under investigation. The main RF parameters analysis and the related summary neighbors are presented accordingly. The entire table is attached to this report.

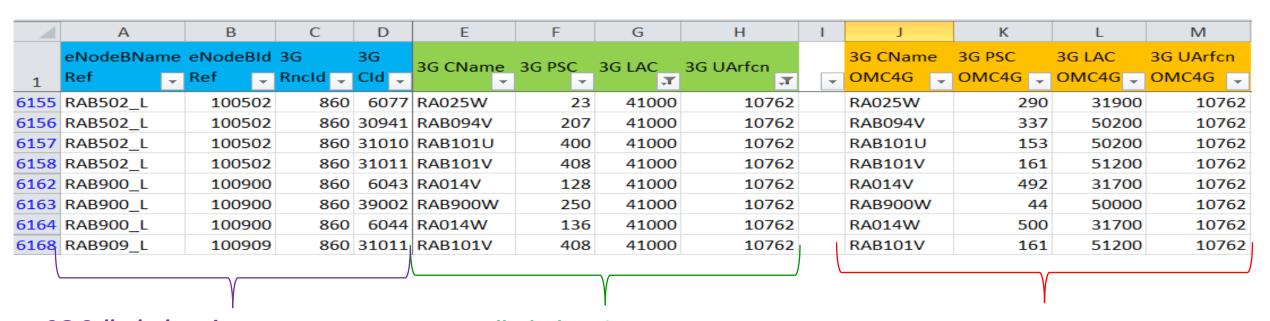
Cell_Code	RNC	Cluster	NodeB Name	FddCell Name	LCell_ID	LAC	Frequency	Power	pCPICH Power	SectorID [Azimuth] (BtsAnt)		MinDist		MinDist (InsideBW)	DistMin to all other Cells InsideBW [Km]
W130112491_11	RN1301E	Cluster_QNH_07	SR-DHA008E-QNH	3G-DHA008M11-QNH	130112491	13019	10788	43	33	Issue? 1 [0] (0)	190	130112883	34.3	False/False	26.7
W130112492_21	RN1301E	Cluster_QNH_07	SR-DHA008E-QNH	3G-DHA008M12-QNH	130112492	13019	10788	43	33	Issue? 2 [90] (0)	191	130112881	34.3	False/False	2.1
W130112493_31	RN1301E	Cluster_QNH_07	SR-DHA008E-QNH	3G-DHA008M13-QNH	130112493	13019	10788	43	33	Issue? 3 [260] (0)	189	130112882	34.3	False/False	3
W130112521_11	RN1301E	Cluster_QNH_07	SR-DHA009E-QNH	3G-DHA009M11-QNH	130112521	13019	10788	43	33	Issue? 1 [0] (0)	300	335712331	590.3	False/True	2.4
W130112522_21	RN1301E	Cluster_QNH_07	SR-DHA009E-QNH	3G-DHA009M12-QNH	130112522	13019	10788	43	33	Issue? 2 [120] (0)	297	335810211	599.1	False/True	24.2
W130112523_31	RN1301E	Cluster_QNH_07	SR-DHA009E-QNH	3G-DHA009M13-QNH	130112523	13019	10788	43	33	Issue? 3 [245] (0)	303	335811541	592.9	False/False	2
W130112801_11	RN1301E	Cluster_QNH_07	SR-DHA010E-QNH	3G-DHA010M11-QNH	130112801	13019	10788	43	34.7	Issue? 1 [10] (0)	0	335813771	583.9	False/True	4.9
W130112802_21	RN1301E	Cluster_QNH_07	SR-DHA010E-QNH	3G-DHA010M12-QNH	130112802	13019	10788	43	34.7	Issue? 2 [120] (0)	8	130110123	31.3	False/True	1.4
W130112803_31	RN1301E	Cluster_QNH_07	SR-DHA010E-QNH	3G-DHA010M13-QNH	130112803	13019	10788	43	34.7	Issue? 3 [255] (0)	16	130112821	37.2	False/False	2.1

Cell_Code	RNC	FddCell Name	DistMax Neigh IntraFreq [Km]	NrNeigh IntraFreq	sib11and Dch IntraFreq	lly Neigh IntraFreq	lly Missing Incoming	Non Reciproca Ily Missing Outgoing IntraFre	Neigh InterFreq	NrNeigh InterFreq	sib11and Dch InterFreq	lly Neigh	Non Reciproca Ily Missing Incoming InterFre	Non Reciproca Ily Missing Outgoing InterFre	DistMax Neigh 2G [Km]	NrNeigh 2G	sib11and Dch 2G	_		sib11and Dch Total
W130112491_11	RN1301E	3G-DHA008M11-QNH	6.6	16	16	16	0	0	7.7	26	26	25	1	0	7.7	31	31	7.7	73	73
W130112492_21	RN1301E	3G-DHA008M12-QNH	6.6	18	18	18	0	0	7.7	29	29	29	0	0	7.7	28	28	7.7	75	75
W130112493_31	RN1301E	3G-DHA008M13-QNH	8.8	17	17	17	0	0	8.8	26	26	26	0	0	8.8	28	28	8.8	71	71
W130112521_11	RN1301E	3G-DHA009M11-QNH	3.7	11	11	10	1	0	11.8	26	26	18	8	0	10	27	27	11.8	64	64
W130112522_21	RN1301E	3G-DHA009M12-QNH	24.2	12	12	12	0	0	16.3	27	27	19	8	0	16.3	25	25	24.2	64	64
W130112523_31	RN1301E	3G-DHA009M13-QNH	8.8	18	18	18	0	0	7.1	29	29	24	5	0	6.9	27	27	8.8	74	74
W130112801_11	RN1301E	3G-DHA010M11-QNH	5.1	19	19	19	0	0	7.7	29	29	27	2	0	7.3	29	29	7.7	77	77
W130112802_21	RN1301E	3G-DHA010M12-QNH	5.1	17	17	17	0	0	7.7	29	29	28	1	0	7.3	29	29	7.7	75	75
W130112803_31	RN1301E	3G-DHA010M13-QNH	7.6	18	18	18	0	0	7.7	29	29	29	0	0	7.6	28	28	7.7	75	75

Cluster Audit & Sanity check (3G3G neighbors)

Below is presented a sample concerning the first **3G3G neighbors** (Source-Target) extracted from the Audit & Sanity check analysis for the cluster under investigation. The main related summary neighbors are presented accordingly. The entire table is attached to this report.

RNC_Sou	RNC_Targ	sib11OrDchU sage	Cluster S	Cell Name S	sourceCID	CID S	PSC S	RNC Name S	Frequenc y S	Cluster T	Cell Name T		targetCID	CID T	PSC T	RNC Name T	Frequenc y T		Neigh Dist [Km]
▼.	*	_	, 7	▼	v	*	~	•	T		~	-	·	~	~	-	~	_	_
1301	1301	sib11AndDch	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190	RN1301E	10788	Cluster_QNH_0	7 3G-DHA002	M41-QNH	130142561	42561	276	RN1301E	3003	2562	2.5
1301	1301	sib11AndDch	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190	RN1301E	10788	Cluster_QNH_0	7 3G-DHA002	M42-QNH	130142562	42562	278	RN1301E	3003	2608	
1301	1301	sib11AndDch	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190	RN1301E	10788	Cluster_QNH_0	7 3G-DHA002	M43-QNH	130142563	42563	273	RN1301E	3003	2649	2.5
1301	1301	sib11AndDch	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190	RN1301E	10788	Cluster_QNH_0	7 3G-DHA003	M41-QNH	130140441	40441	201	RN1301E	3003	2694	6.3
1301	1301	sib11AndDch	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190	RN1301E	10788	Cluster_QNH_0	7 3G-DHA003	M42-QNH	130140442	40442	202	RN1301E	3003	2747	6.3
1301	1301	sib11AndDch	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190	RN1301E	10788	Cluster_QNH_0	7 3G-DHA003	M43-QNH	130140443	40443	204	RN1301E	3003	2791	6.3
1301	1301	sib11AndDch	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190	RN1301E	10788	Cluster_QNH_0	7 3G-DHA004	M42-QNH	130140482	40482	363	RN1301E	3003	2875	7.7
1301	1301	sib11AndDch	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190	RN1301E	10788	Cluster_QNH_0	7 3G-DHA005	M41-QNH	130142721	42721	251	RN1301E	3003	2945	3.5
1301	1301	sib11AndDch	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190	RN1301E	10788	Cluster_QNH_0	7 3G-DHA005	M42-QNH	130142722	42722	249	RN1301E	3003	3003	
1301	1301	sib11AndDch	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190	RN1301E	10788	Cluster_QNH_0	7 3G-DHA005	M43-QNH	130142723	42723	255	RN1301E	3003	3051	3.5
1301	1301	sib11AndDch	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190	RN1301E	10788	Cluster_QNH_0	7 3G-DHA006	M41-QNH	130142761	42761	396	RN1301E	3003	3094	5.1
1301	1301	sib11AndDch	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190	RN1301E	10788	Cluster_QNH_0	7 3G-DHA007	M43-QNH	130142893	42893	383	RN1301E	3003	3327	6.1
1301	1301	sib11AndDch	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190	RN1301E	10788	Cluster_QNH_0	7 3G-DHA008	M12-QNH	130112492	12492	191	RN1301E	10788	3429	0
1301	1301	sib11AndDch	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190	RN1301E	10788	Cluster_QNH_0	7 3G-DHA008	M13-QNH	130112493	12493	189	RN1301E	10788	3475	0
1301	1301	sib11AndDch	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190	RN1301E	10788	Cluster_QNH_0	7 3G-DHA008	M41-QNH	130142491	42491	190	RN1301E	3003	3638	0
1301	1301	sib11AndDch	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190	RN1301E	10788	Cluster_QNH_0	7 3G-DHA008	M42-QNH	130142492	42492	191	RN1301E	3003	3689	0
1301	1301	sib11AndDch	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190	RN1301E	10788	Cluster_QNH_0	7 3G-DHA008	M43-QNH	130142493	42493	189	RN1301E	3003	3740	0
1301	1301	sib11AndDch	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190	RN1301E	10788	Cluster_QNH_0	7 3G-DHA009	M13-QNH	130112523	12523	303	RN1301E	10788	3861	
1301	1301	sib11AndDch	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190	RN1301E	10788	Cluster_QNH_0	7 3G-DHA009	M41-QNH	130142521	42521	300	RN1301E	3003	4026	5.8
1301	1301	sib11AndDch	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190	RN1301E	10788	Cluster_QNH_0	7 3G-DHA009	M43-QNH	130142523	42523	303	RN1301E	3003	4136	5.8
1301	1301	sib11AndDch	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190	RN1301E	10788	Cluster_QNH_0	7 3G-DHA010	M11-QNH	130112801	12801	0	RN1301E	10788	4189	2.1
1301	1301	sib11AndDch	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190	RN1301E	10788	Cluster_QNH_0	7 3G-DHA010	M12-QNH	130112802	12802	8	RN1301E	10788	4238	2.1
1301	1301	sib11AndDch	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190	RN1301E	10788	Cluster_QNH_0	7 3G-DHA010	M13-QNH	130112803	12803	16	RN1301E	10788	4284	
1301	1301	sib11AndDch	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190	RN1301E	10788	Cluster_QNH_0	7 3G-DHA010	M41-QNH	130142801	42801	0	RN1301E	3003	4466	
1301	1301	sib11AndDch	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190	RN1301E	10788	Cluster_QNH_0	7 3G-DHA010	M42-QNH	130142802	42802	8	RN1301E	3003	4518	2.1
1301	1301	sib11AndDch	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190	RN1301E	10788	Cluster_QNH_0	7 3G-DHA010	M43-QNH	130142803	42803	16	RN1301E	3003	4576	2.1


Cluster Audit & Sanity check (3G2G neighbors)

Below is presented a sample concerning the first **3G2G neighbors** (Source-Target) extracted from the Audit & Sanity check analysis for the cluster under investigation. The main related summary neighbors are presented accordingly. The entire table is attached to this report.

Cell_Source	Cell_Target	RNC_Sourc	Cluster S	Cell Name S	sourceCID	CID S	PSC S RNC	Frequenc Cell Name T	Itarget(10 -	o11OrDchU N	_
VAMA 2014 2404 44	_	e •	Charter ONII 07	3C DUA000M44 ONU	420442404	42404	▼ Name S ▼		▼ LAC ▼ sa		[Km] <u>▼</u>
W130112491_11	G13511.12561_1			3G-DHA008M11-QNH	130112491	12491	190 RN1301E	10788 QDH0021 QDH0021			2.5
W130112491_11	G13511.12562_2			3G-DHA008M11-QNH	130112491	12491	190 RN1301E	10788 QDH0022 QDH0022			2.5
W130112491_11	G13511.10441_1			3G-DHA008M11-QNH		12491	190 RN1301E	10788 QDH0031 QDH0031			6.3
W130112491_11	G13511.10442_2			3G-DHA008M11-QNH	130112491	12491	190 RN1301E	10788 QDH0032 QDH0032			6.3
W130112491_11	G13511.10443_3	1301	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190 RN1301E	10788 QDH0033 QDH0033	10443 13511 sik	o11AndDch	6.3
W130112491_11	G13511.10481_1	1301	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190 RN1301E	10788 QDH0041 QDH0041	10481 13511 sik	o11AndDch	7.7
W130112491_11	G13511.10482_2	1301	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190 RN1301E	10788 QDH0042 QDH0042	10482 13511 sik	o11AndDch	7.7
W130112491_11	G13511.10483_3	1301	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190 RN1301E	10788 QDH0043 QDH0043	10483 13511 sik	o11AndDch	7.7
W130112491_11	G13511.12721_1	1301	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190 RN1301E	10788 QDH0051 QDH0051	12721 13511 sik	o11AndDch	3.5
W130112491_11	G13511.12722_2	1301	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190 RN1301E	10788 QDH0052 QDH0052	12722 13511 sik	o11AndDch	3.5
W130112491_11	G13511.12723_3	1301	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190 RN1301E	10788 QDH0053 QDH0053	12723 13511 sik	o11AndDch	3.5
W130112491_11	G13511.12761_1	1301	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190 RN1301E	10788 QDH0061 QDH0061	12761 13511 sik	o11AndDch	5.1
W130112491_11	G13511.12893_3	1301	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190 RN1301E	10788 QDH0073 QDH0073	12893 13511 sik	o11AndDch	6.1
W130112491_11	G13511.12491_1	1301	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190 RN1301E	10788 QDH0081 QDH0081	12491 13511 sik	o11AndDch	0
W130112491_11	G13511.12492_2	1301	Cluster_QNH_07	3G-DHA008M11-QNH	130112491	12491	190 RN1301E	10788 QDH0082 QDH0082	12492 13511 sik	o11AndDch	0
W130112491_11	G13511.12493_3	1301	Cluster QNH 07	3G-DHA008M11-QNH	130112491	12491	190 RN1301E	10788 QDH0083 QDH0083	12493 13511 sik	o11AndDch	0
W130112491_11	G13511.12521_1	1301	Cluster QNH 07	3G-DHA008M11-QNH	130112491	12491	190 RN1301E	10788 QDH0091 QDH0091	12521 13511 sik	o11AndDch	5.8
W130112491_11	G13511.12522 2			3G-DHA008M11-QNH		12491	190 RN1301E	10788 QDH0092 QDH0092		o11AndDch	5.8
W130112491 11	G13511.12523 3	1301	Cluster QNH 07	3G-DHA008M11-QNH		12491	190 RN1301E	10788 QDH0093 QDH0093			5.8
W130112491_11	G13511.12801_1			3G-DHA008M11-QNH		12491	190 RN1301E	10788 QDH0101 QDH0101		o11AndDch	2.1
W130112491_11	G13511.12802_2			3G-DHA008M11-QNH		12491	190 RN1301E	10788 QDH0102 QDH0102			2.1
W130112491_11	G13511.12803_3			3G-DHA008M11-QNH		12491	190 RN1301E	10788 QDH0103 QDH0103			2.1
W130112491_11	G13511.12921_1			3G-DHA008M11-QNH		12491	190 RN1301E	10788 QDH0111 QDH0111			4.3
W130112491_11	G13511.12922_2			3G-DHA008M11-QNH	130112491	12491	190 RN1301E	10788 QDH0112 QDH0112			4.3
W130112491_11	G13511.12923_3			3G-DHA008M11-QNH		12491	190 RN1301E	10788 QDH0113 QDH0113			4.3
W130112491_11	D13511.60771_4			3G-DHA008M11-QNH		12491	190 RN1301E	10788 QHH0014 QHH0014			6.6
W130112491_11	D13511.60771_4			3G-DHA008M11-QNH			190 RN1301E	10788 QHH0016 QHH0016			6.6
**130112431_11	213311.00773_0	1301	Cidatei_Qivii_07	SC DIMOCOMITI QIVII	130112431	12 171	130 11113012	10,00 41110010141110010	00775 15511 311	ZZZNIGDCII	0.0

Cluster Audit & Sanity check (discrepancies)

4G Technology: Example of 3G discrepancy declarations

3G Cells declarations
@ OMC_4G
@ eNodeB level

3G Cells declarations
@ OMC_3G

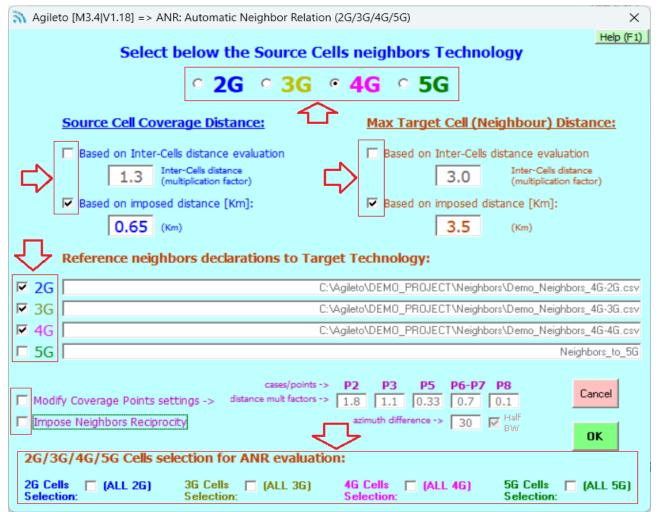
3G Cells declarations
@ OMC_4G
in discrepancy

Agenda

- Introduction: Context, Inputs and Deliverables
- Geo-spatial representation of the Network/Cluster
- Cluster Audit & Sanity Check (RF main param + Neighbors)
- Automatic best Neighboring evaluation (missing detected)
- Drive Test (DT) Analysis and Recommendations

Automatic best Neighboring evaluation

Agileto dedicated module (M3.4) provides the optimum neighbors generation based only on the Cells positions (Latitude and Longitude) + their antennas orientations (Azimuths) together with the Source Coverage + Target Distance (see below).


- ➤ Evaluating the cluster average Inter-Cells distance ~ 3Km, the following inputs were used:
- Source Cell Coverage Distance:

4Km

Target Cell (Neighbor) Distance (maximum):

8Km

➤ By using as reference the existing 3G3G + 3G2G neighbors declarations extracted from the OMC 3G export snapshot file, the missing neighbors detected by this method will be presented in tabular format and Google Earth representation on this section.

Automatic best Neighboring evaluation (3G3G missing)

Below is presented a sample representing the first missing **3G3G neighbors** (Source-Target) detected by Agileto module M3.4 for the cluster under investigation. The entire table containing a number of **9 IntraFrq** + **259 InterFrq** missing neighbors detected is attached to this report.

Cell_Name S	Cell_Name T	RncId S	CellId S	Rncld T	CellId T	Dist [Km]	Neighbor case	Neighbor Diff 💂	FrqLayer S	FrqLayer T	Cluster S	Cluster T
3G-DHA010M11-QNH	3G-DHA010M21-QNH	1301	12801	1301	22801	0	1	1	1	2	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M11-QNH	3G-DHA010M22-QNH	1301	12801	1301	22802	0	1	1	1	2	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M11-QNH	3G-DHA010M23-QNH	1301	12801	1301	22803	0	1	1	1	2	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M11-QNH	3G-DHA011M21-QNH	1301	12801	1301	22921	2.2	4	1	1	2	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M11-QNH	3G-TYN018M11-QNH	1301	12801	1301	12471	7.6	4	1	1	1	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M11-QNH	3G-TYN018M21-QNH	1301	12801	1301	22471	7.6	4	1	1	2	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M11-QNH	3G-TYN018M41-QNH	1301	12801	1301	42471	7.6	4	1	1	7	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M11-QNH	3G-HHA002M43-QNH	1301	12801	1301	42283	7.5	4	1	1	7	Cluster_QNH_07	Cluster_QNH_08
3G-DHA010M11-QNH	3G-HHA001M21-QNH	1301	12801	1301	20771	4.9	4	1	1	2	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M11-QNH	3G-TYN005M21-QNH	1301	12801	1301	20871	5.1	4	1	1	2	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M11-QNH	3G-DHA012M21-QNH	1301	12801	1301	20801	1.4	4	1	1	2	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M12-QNH	3G-DHA010M21-QNH	1301	12802	1301	22801	0	1	1	1	2	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M12-QNH	3G-DHA010M22-QNH	1301	12802	1301	22802	0	1	1	1	2	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M12-QNH	3G-DHA010M23-QNH	1301	12802	1301	22803	0	1	1	1	2	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M12-QNH	3G-DHA011M22-QNH	1301	12802	1301	22922	2.2	4	1	1	2	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M12-QNH	3G-TYN018M11-QNH	1301	12802	1301	12471	7.6	4	1	1	1	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M12-QNH	3G-TYN018M21-QNH	1301	12802	1301	22471	7.6	4	1	1	2	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M12-QNH	3G-TYN018M41-QNH	1301	12802	1301	42471	7.6	4	1	1	7	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M12-QNH	3G-DHA008M22-QNH	1301	12802	1301	22492	2.1	4	1	1	2	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M12-QNH	3G-HHA001M23-QNH	1301	12802	1301	20773	4.9	4	1	1	2	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M12-QNH	3G-TYN005M22-QNH	1301	12802	1301	20872	5.1	4	1	1	2	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M12-QNH	3G-DHA004M42-QNH	1301	12802	1301	40482	7.3	4	1	1	7	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M12-QNH	3G-DHA012M22-QNH	1301	12802	1301	20802	1.4	4	1	1	2	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M13-QNH	3G-DHA010M21-QNH	1301	12803	1301	22801	0	1	1	1	2	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M13-QNH	3G-DHA010M22-QNH	1301	12803	1301	22802	0	1	1	1	2	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M13-QNH	3G-DHA010M23-QNH	1301	12803	1301	22803	0	1	1	1	2	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M13-QNH	3G-DHA011M23-QNH	1301	12803	1301	22923	2.2	4	1	1	2	Cluster_QNH_07	Cluster_QNH_07

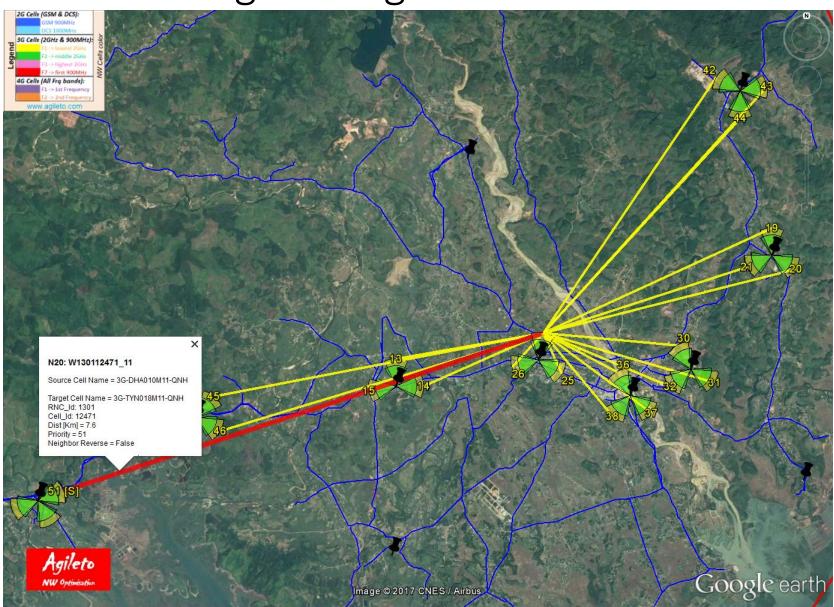
Automatic best Neighboring evaluation (3G2G missing)

Below is presented a sample representing the first missing **3G2G neighbors** (Source-Target) detected by Agileto module M3.4 for the cluster under investigation. The entire table containing a number of **64** missing neighbors detected (3G2G) is attached to this report.

Cell_Name S	Cell_Name T	RncId S	CellId S	LAC2G T	CellId T	Dist [Km]	Neighbor	Neighbor	FrqLayer S	FrqLayer T	Cluster S	Cluster T
▼		▼.	~	▼	▼	7	case	Diff	Ţ	▼	*	▼
3G-DHA010M11-QNH	QDH0121	1301	12801	13511	10801	1.4	4	1	1	1	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M11-QNH	QHH0023	1301	12801	13511	12283	7.5	4	1	1	1	Cluster_QNH_07	Cluster_QNH_08
3G-DHA010M11-QNH	QTY0181	1301	12801	13511	12471	7.6	4	1	1	1	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M12-QNH	QDH0122	1301	12802	13511	10802	1.4	4	1	1	1	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M12-QNH	QTY0181	1301	12802	13511	12471	7.6	4	1	1	1	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M13-QNH	QDH0032	1301	12803	13511	10442	7.7	4	1	1	1	Cluster_QNH_07	Cluster_QNH_07
3G-DHA010M13-QNH	QHH0023	1301	12803	13511	12283	7.5	4	1	1	1	Cluster_QNH_07	Cluster_QNH_08
3G-DHA011M11-QNH	QDH0042	1301	12921	13511	10482	8	4	1	1	1	Cluster_QNH_07	Cluster_QNH_07
3G-DHA011M11-QNH	QDH0121	1301	12921	13511	10801	1	4	1	1	1	Cluster_QNH_07	Cluster_QNH_07
3G-DHA011M11-QNH	QHH0023	1301	12921	13511	12283	6.4	4	1	1	1	Cluster_QNH_07	Cluster_QNH_08
3G-DHA011M11-QNH	QHH0053	1301	12921	13511	12603	7.7	4	1	1	1	Cluster_QNH_07	Cluster_QNH_08
3G-DHA011M11-QNH	QTY0051	1301	12921	13511	10871	7.3	4	1	1	1	Cluster_QNH_07	Cluster_QNH_07
3G-DHA011M12-QNH	QDH0042	1301	12922	13511	10482	8	4	1	1	1	Cluster_QNH_07	Cluster_QNH_07
3G-DHA011M12-QNH	QDH0082	1301	12922	13511	12492	4.3	4	1	1	1	Cluster_QNH_07	Cluster_QNH_07
3G-DHA011M12-QNH	QDH0122	1301	12922	13511	10802	1	4	1	1	1	Cluster_QNH_07	Cluster_QNH_07
3G-DHA011M12-QNH	QTY0052	1301	12922	13511	10872	7.3	4	1	1	1	Cluster_QNH_07	Cluster_QNH_07
3G-DHA011M13-QNH	QDH0042	1301	12923	13511	10482	8	4	1	1	1	Cluster_QNH_07	Cluster_QNH_07
3G-DHA011M13-QNH	QDH0123	1301	12923	13511	10803	1	4	1	1	1	Cluster_QNH_07	Cluster_QNH_07
3G-DHA011M13-QNH	QHH0016	1301	12923	13511	60773	4.1	4	1	1	2	Cluster_QNH_07	Cluster_QNH_07
3G-DHA011M13-QNH	QHH0023	1301	12923	13511	12283	6.4	4	1	1	1	Cluster_QNH_07	Cluster_QNH_08
3G-DHA011M13-QNH	QHH0053	1301	12923	13511	12603	7.7	4	1	1	1	Cluster_QNH_07	Cluster_QNH_08
3G-TYN018M11-QNH	QTY0091	1301	12471	13511	12671	7.6	4	1	1	1	Cluster_QNH_07	Cluster_QNH_07
3G-TYN018M11-QNH	QTY0101	1301	12471	13511	12901	5.5	4	1	1	1	Cluster_QNH_07	Cluster_QNH_07
3G-TYN018M12-QNH	QTY0091	1301	12472	13511	12671	7.6	4	1	1	1	Cluster_QNH_07	Cluster_QNH_07
3G-TYN024M11-QNH	QDH0033	1301	12811	13511	10443	7.3	4	1	1	1	Cluster_QNH_07	Cluster_QNH_07
3G-TYN024M11-QNH	QTY0053	1301	12811	13511	10873	5.8	4	1	1	1	Cluster_QNH_07	Cluster_QNH_07
3G-DHA008M11-QNH	QDH0121	1301	12491	13511	10801	3.4	4	1	1	1	Cluster_QNH_07	Cluster_QNH_07
3G-DHA008M13-QNH	QDH0093	1301	12493	13511	12523	5.8	4	1	1	1	Cluster_QNH_07	Cluster_QNH_07

17

Automatic best Neighboring evaluation


Example of the **3G3G** Neighbors presenting the existing neighbors declarations + the missing detected by Agileto module M3.4 (and mapped on Google Earth by M3.2)

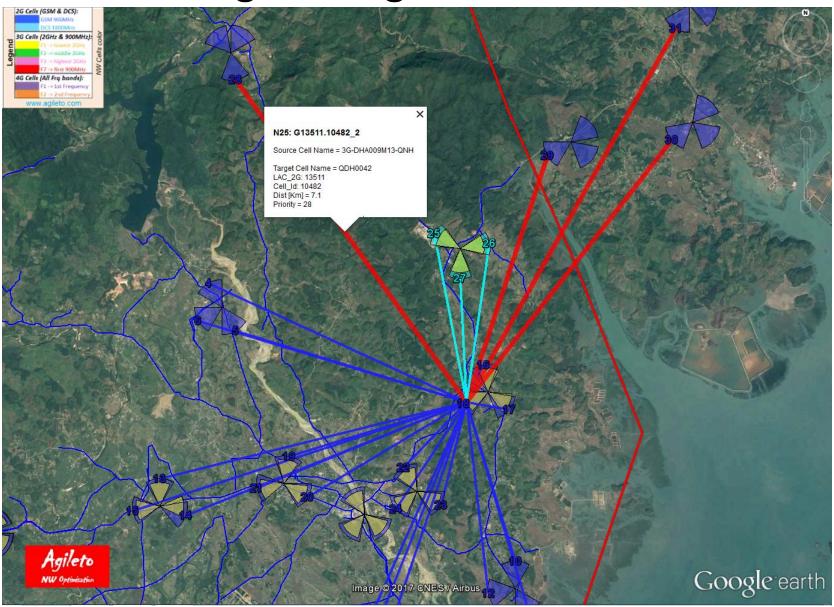
➤ Source Cell: 3G-DHA010M11-QNH

On this example there are detected one (1) missing neighbors which are presented on the right side with red lines.

Obs.

The full representation in GE of all the 3G3G neighbors including the already existing neighbors + the missing detected (red lines) are attached to this report.

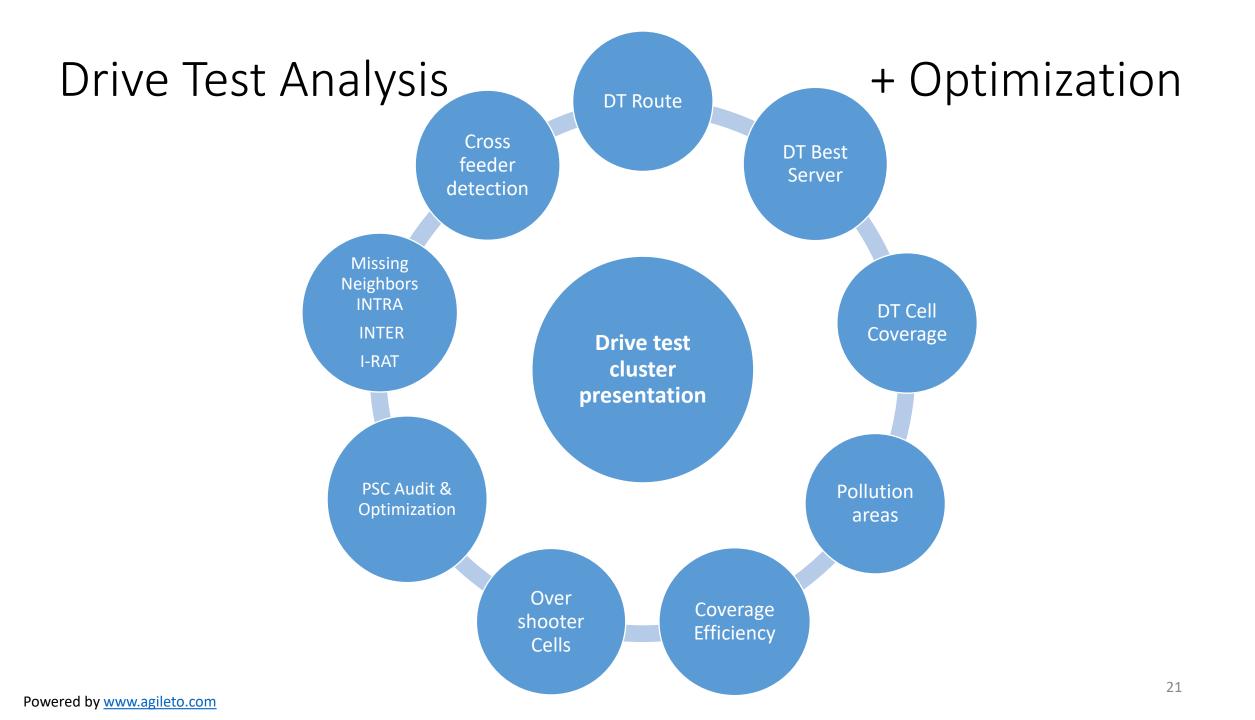
Automatic best Neighboring evaluation

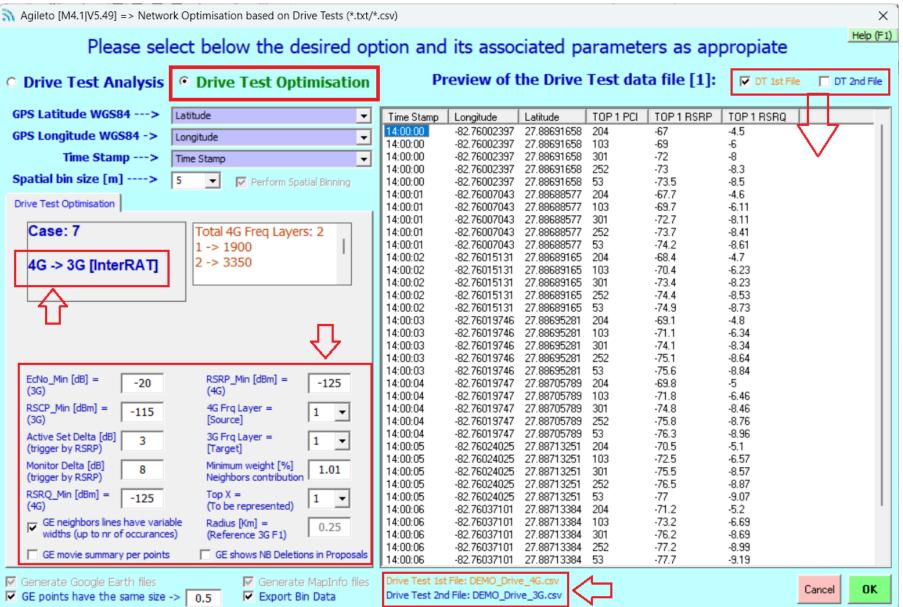

Example of the **3G2G** Neighbors presenting the existing neighbors declarations + the missing detected by Agileto module M3.4 (and mapped on Google Earth by M3.2)

➤ Source Cell: 3G-DHA009M13-QNH

On this example there are detected four (4) missing neighbors which are presented on the right side with red lines.

Obs.


The full representation in GE of all the 3G2G neighbors including the already existing neighbors + the missing detected (red lines) are attached to this report.


Powered by www.agileto.com

Agenda

- Introduction: Context, Inputs and Deliverables
- Geo-spatial representation of the Network/Cluster
- Cluster Audit & Sanity Check (RF main param + Neighbors)
- Automatic best Neighboring evaluation (missing detected)
- Drive Test (DT) Analysis and Optimization

Drive Test Analysis + Optimization

22

Drive test summary

Project: POC_REFERENCE

Input Drive Test File: Post-Swap-C07-Scan3G_F1.txt

DRIVE TEST SUMMARY:

Agileto => www.agileto.com © 2025 All rights reserved (support@agileto.com) [M4.1|V5.23] => Network Optimisation based on Drive Tests (*.txt/*.csv) User Login: Agileto | Run Time: 14Nov2024 19:54:01-19:55:08 [1min 7sec]

Input Drive Test measurement file: D:\Agileto\POC_REFERENCE\Drive_Tests\DT_Measurements\Post-Swap-Cluster07-Laptop1_202X1028\export\Final\Post-Swap-C07-Scan3G_F1.txt Input OMC Snapshot file: D:\Agileto\POC_REFERENCE\OMC_Snapshots\01-11-202X\2G\cm_exp_202X1101_175740_QNH.xml Input Agileto database reference file: D:\Agileto\POC_REFERENCE\MobileNW_Config\MobileNW_Config.xls

Drive Test post-processing -> Option Selected: 3G -> 3G [IntraFrequency]

Source Technology: 3G, Frequency layer = 1, DL_UARFCN = 10788 Target Technology: 3G, Frequency layer = 1, DL_UARFCN = 10788

Source: Nr of BestServers = 67 Target: Nr of BestServers = 67

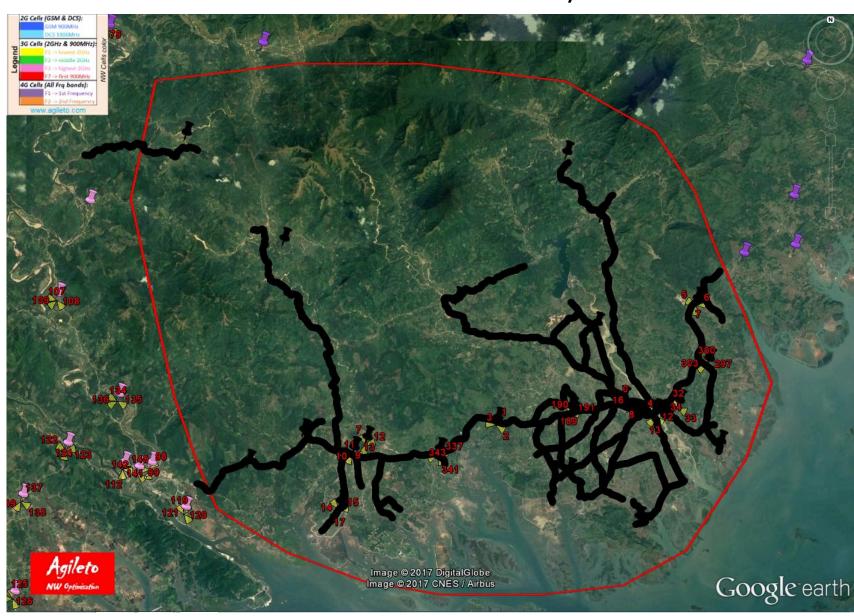
EcNo Min [dB]: -25 RSCP Min [dBm]: -125

Active Set (Ec/No) Range (delta BestServer) for valid 'Best Servers' [dB]: 3

Monitoring Set (Ec/No) Range (delta BestServer) for valid Scanner measurements [dB]: 8

Minimum Neighbors Imposed Weight [%]: 1.01

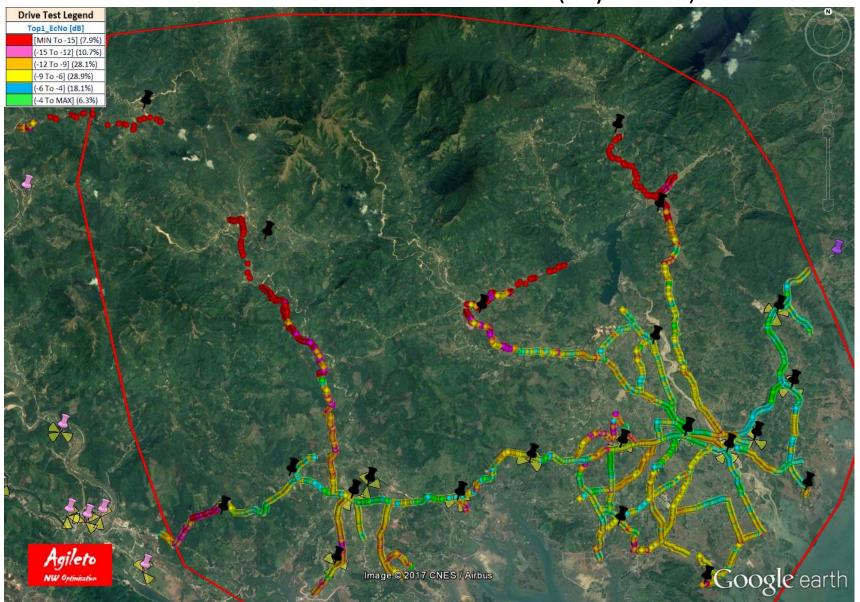
Spatial binning operated: YES, -> bin size [m]: 10


Output Drive Test Network Optimisation file: D:\Agileto\POC_REFERENCE\Drive_Tests\DT_Optimisation\Bin10m_Post-Swap-C07-Scan3G_F1-3G3G_F1F1\Bin10m_Post-Swap-C07-Scan3G_F1-3G3G_F1F1\DT-NWOptim.xls

- 1) Total number of INPUT lines detected into DRIVE TEST measurements file: 235490, Drive Test => 65H 25min, [100%]
- 2) Total number of MOBILITY Drive Test measurements: 208756, Drive Test => 57H 59min, [88.65%]
- 3) Total number of STATIC [No Mobility detected] Drive Test measurements: 9959, Drive Test => 2H 46min, [4.23%]
- 4) Total number of INVALID GPS (Lat/Lon) lines: 0, Drive Test => 0H 0min, [0.00%]
- 5) Total number of INVALID DRIVE TEST SOURCE measurements: 16775, Drive Test => 4H 40min, [7.12%]
- 6) Total number of INVALID DRIVE TEST TARGET measurements: 0, Drive Test => 0H 0min, [0.00%]

Total number of points resulted after spatial binning aggregation: 18265 (bin size[m]=10)

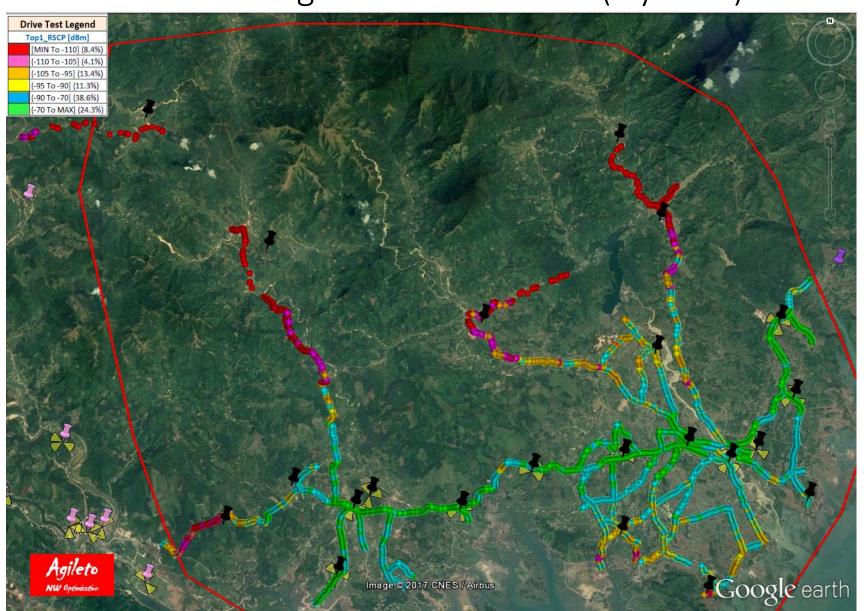
Route of the 3G DT cluster layer F1


- ➤ Drive test route related to the 3G cluster layer F1:
 - The DT covers ~ 182 Km (without counting repetitive routes)
 - Total aggregated time of DRIVE
 TEST detected into measurements
 file: 100%
 - Total number of MOBILITY Drive Test measurements: 88.65%
 - Total number of STATIC [No Mobility detected] Drive Test measurements: 4.23%
 - Total number of INVALID Source
 Drive Test measurements:
 7.12%

DT Best Server

Quality: Best server EcNo of the 3G DT cluster (layer F1)

- ➤ Percentage distribution of EcNo (Top1 = Best server)
 - 24.4 % EcNo ≥ -6dB Good quality
 - 57.0 %-12dB ≤ EcNo < -6 dBAcceptable quality
 - 18.6 % EcNo < -12dB Bad quality



26

Powered by www.agileto.com

Coverage: Best server RSCP along the 3G DT cluster (layer F1)

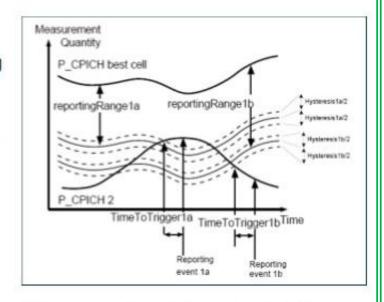
- ➤ Percentage distribution of RSCP (TOP1 = Best server)
- 24.3 % of the DT route
 RSCP ≥ -70 dBm
 Deep Indoor, good coverage
- 38.6 % of the DT route
 -90 dBm ≤ RSCP < -70 dBm
 Indoor acceptable coverage
- 24.7 % of the DT route
 -105 dBm ≤ RSCP < -90 dBm
 Outdoor poor coverage
- 12.5 % of the DT route RSCP < -105 dBm Bad coverage

Powered by www.agileto.com

Pollution areas

Cluster DT analysis: Pollution 3G

Definition:


Polluted area = area where the *number* of cells detected within the "e1a" Reporting range against the best server, exceeds the operator's Active Set size maximum number of cells.

Generally we have:

- "e1a" Reporting range against the best server = 3 dB
- Active Set size maximum = <u>3</u> (cells)

Event 1a, Primary CPICH enters Reporting Range

- Reported Cell not in AS
- Hysterisis and Time to trigger used to prevent ping pong reports
- If more than 1 cell is reported, best cell in terms of Ec/No is taken into consideration
- If AS is not full, Cell is Added otherwise worst cell is replaced (event 1c)

➤ Both event 1a and 1b are depicted here.

Cluster DT analysis: Pollution (2G / 3G / 4G / 5G)

Similar like into the 3G technology, Agileto tool is using the same concepts of the Active Set size (AS_size) and Active Set range (AS_range) for the technologies 2G/4G/5G too, as following:

Active Set size means the <u>number of the cells</u> (detected on each drive test measurement point) which are falling within a certain range (called Active Set range, by default = 3dB) against the best server (or the Top1).

Therefore although in reality for the technologies 2G/4G/5G there is a single active radio link between the mobile (UE) and a single cell, Agileto tool keeps the same concepts of AS_size and AS_range for the Drive Test analysis and optimization purpose.

General Definition for (2G / 3G / 4G / 5G):

Polluted area = area where **AS_size** (the number of the cells detected on each drive test measurement point within **AS_range** against the best server) exceeds a certain value (*by default* = 3 cells).

Conclusion:

Polluted area => Drive Test points where we have AS_size > 3 (cells).

Notice:

AS_range => may be provided as input to Agileto tool (by default = 3dB).


Cluster DT analysis: Pollution

- ➤ Percentage distribution of Active Set (AS) size along the DT route:
 - 99.3 %AS size ≤ 3No polluted area
 - 0.7 %
 AS size ≥ 4

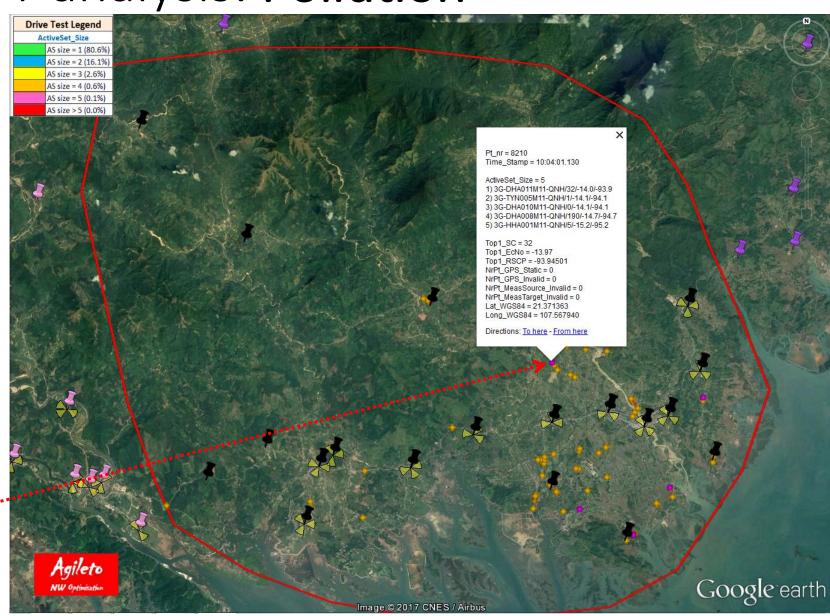
Polluted area

Obs:

Due to the low number of 3G cells on F1 frequency layer existing on this cluster it is somehow expected do not encounter important polluted areas (it is confirmed by the figures mentioned above).

31

Powered by www.agileto.com


Cluster DT analysis: Pollution

➤ Geographically distribution of the points representing the Polluted areas:

0.7 %AS ≥ 4Polluted areas

Notice:

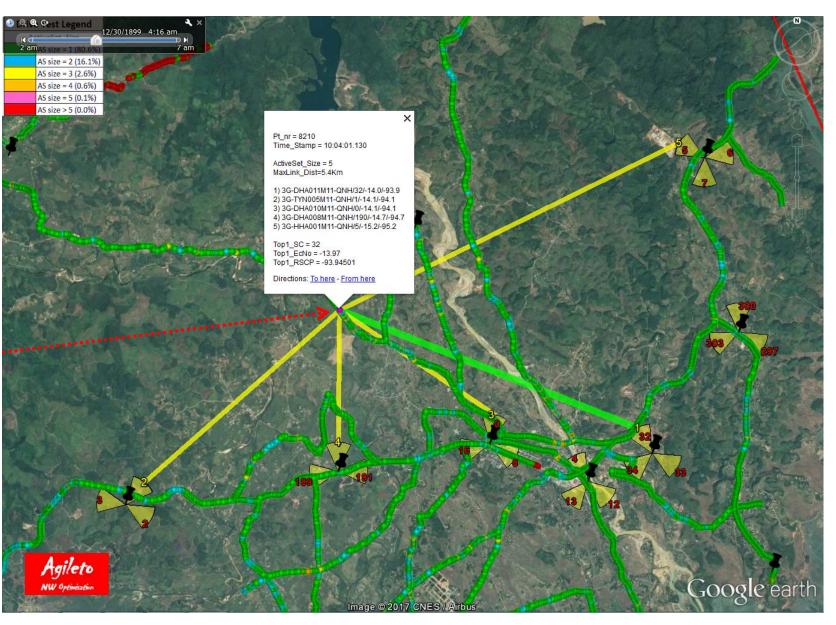
Although it is not detected an important polluted area over the cluster under investigation, it was selected one of the rare cases (0.1%) where we have 5 cells concurrent in Active Set (ASet size = 5). For the general placement of the point please ••• see the screenshot on the right side.

Powered by www.agileto.com

> Example of pollution Area:

Active Set Size = 5

We have 5 cells which are detected within "e1a" reporting range of 3dB against the best server (Top1). The point number together with the timestamp + Top1 + the Cells detected within 3dB are presented below.


The coverage areas for each cell will be presented further on this section for the deeper investigation.

Pt_nr = 8210 Time_Stamp = 10:04:01.130

ActiveSet_Size = 5
MaxLink Dist=5.4Km

- 1) 3G-DHA011M11-QNH/32/-14.0/-93.9
- 2) 3G-TYN005M11-QNH/1/-14.1/-94.1
- 3) 3G-DHA010M11-QNH/0/-14.1/-94.1
- 4) 3G-DHA008M11-QNH/190/-14.7/-94.7
- 5) 3G-HHA001M11-QNH/5/-15.2/-95.2

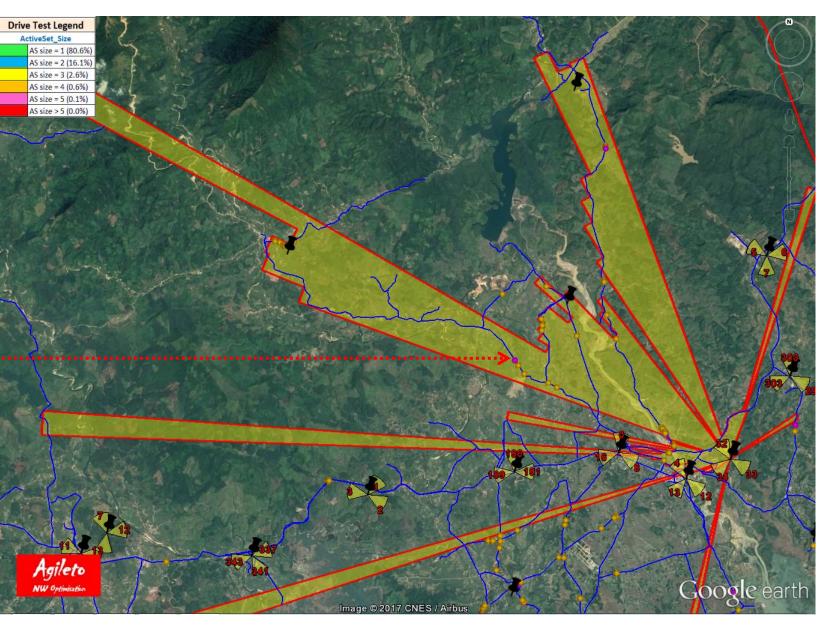
Top1_SC = 32 Top1_EcNo = -13.97 Top1_RSCP = -93.94501

➤ Full coverage for the Top1 cell detected:

3G-DHA011M11-QNH

PSC = 32 Sector_ID = 1 Azimuth = 330 Ant_Height = 39.5 El_Tilt = 7 Mec_Tilt = 0

Pt nr = 8210


Time_Stamp = 10:04:01.130

ActiveSet_Size = 5 MaxLink_Dist=5.4Km

1) 3G-DHA011M11-QNH/32/-14.0/-93.9

- 2) 3G-TYN005M11-QNH/1/-14.1/-94.1
- 3) 3G-DHA010M11-QNH/0/-14.1/-94.1
- 4) 3G-DHA008M11-QNH/190/-14.7/-94.7
- 5) 3G-HHA001M11-QNH/5/-15.2/-95.2

Top1_SC = 32 Top1_EcNo = -13.97 Top1_RSCP = -93.94501

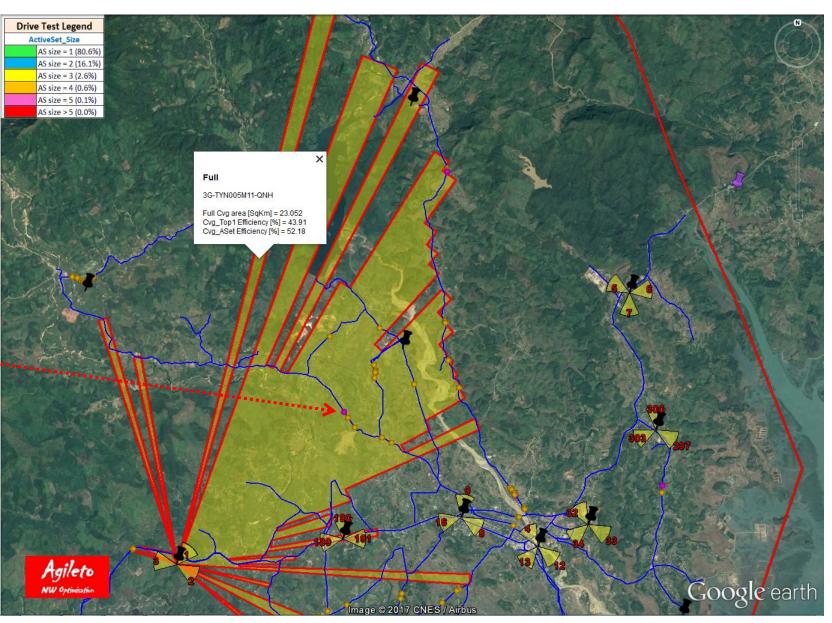
➤ Full coverage for the Top2 cell detected:

3G-TYN005M11-QNH

PSC = 1
Sector_ID = 1
Azimuth = 40
Ant_Height = 37
El_Tilt = 4 => proposed New El_Tilt = 5
Mec_Tilt = 0

Pt_nr = 8210

Time_Stamp = 10:04:01.130


ActiveSet_Size = 5

MaxLink_Dist=5.4Km

- 1) 3G-DHA011M11-QNH/32/-14.0/-93.9
- 2) 3G-TYN005M11-QNH/1/-14.1/-94.1
- 3) 3G-DHA010M11-QNH/0/-14.1/-94.1
- 4) 3G-DHA008M11-QNH/190/-14.7/-94.7
- 5) 3G-HHA001M11-QNH/5/-15.2/-95.2

 $Top1_SC = 32$ $Top1_EcNo = -13.97$

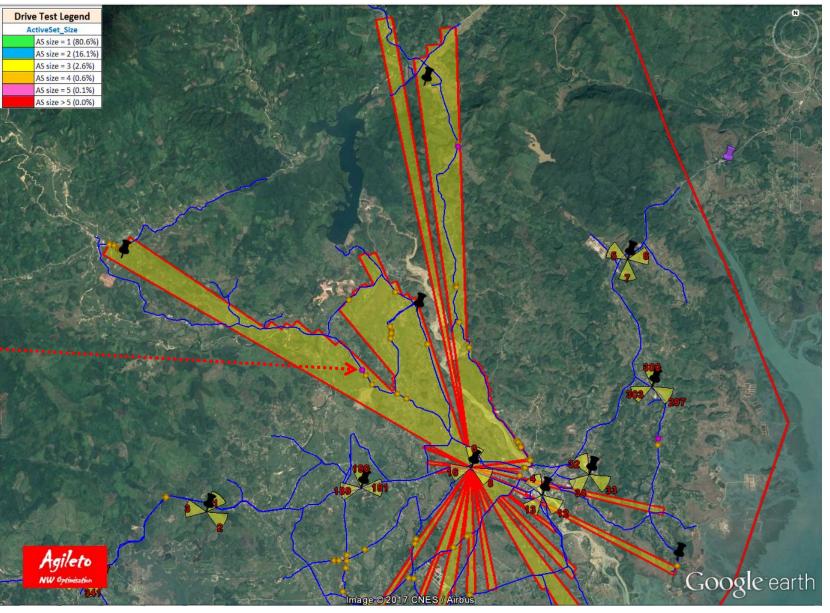
 $Top1_RSCP = -93.94501$

➤ Full coverage for the Top3 cell detected:

3G-DHA010M11-QNH

PSC = 0 Sector_ID = 1 Azimuth = 10 Ant_Height = 36 El_Tilt = 5 Mec_Tilt = 0

Pt nr = 8210


Time_Stamp = 10:04:01.130

ActiveSet_Size = 5

MaxLink_Dist=5.4Km

- 1) 3G-DHA011M11-QNH/32/-14.0/-93.9
- 2) 3G-TYN005M11-QNH/1/-14.1/-94.1
- 3) 3G-DHA010M11-QNH/0/-14.1/-94.1
- 4) 3G-DHA008M11-QNH/190/-14.7/-94.7
- 5) 3G-HHA001M11-QNH/5/-15.2/-95.2

Top1_SC = 32 Top1_EcNo = -13.97 Top1_RSCP = -93.94501

36

"Zoom in" on polluted area

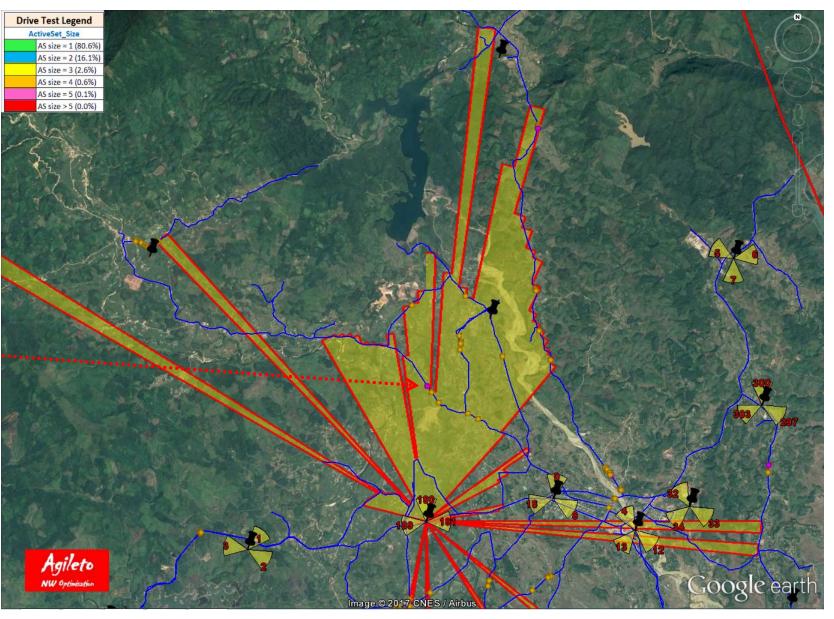
➤ Full coverage for the Top4 cell detected:

3G-DHA008M11-QNH

PSC = 190 Sector_ID = 1 Azimuth = 0 Ant_Height = 32 El_Tilt = 3 Mec_Tilt = 4

Pt nr = 8210

Time_Stamp = 10:04:01.130


ActiveSet_Size = 5

MaxLink_Dist=5.4Km

- 1) 3G-DHA011M11-QNH/32/-14.0/-93.9
- 2) 3G-TYN005M11-QNH/1/-14.1/-94.1
- 3) 3G-DHA010M11-QNH/0/-14.1/-94.1
- 4) 3G-DHA008M11-QNH/190/-14.7/-94.7
- 5) 3G-HHA001M11-QNH/5/-15.2/-95.2

Top1_SC = 32 Top1_EcNo = -13.97

Top1_RSCP = -93.94501

"Zoom in" on polluted area

> Full coverage for the Top5 cell detected:

3G-HHA001M11-QNH

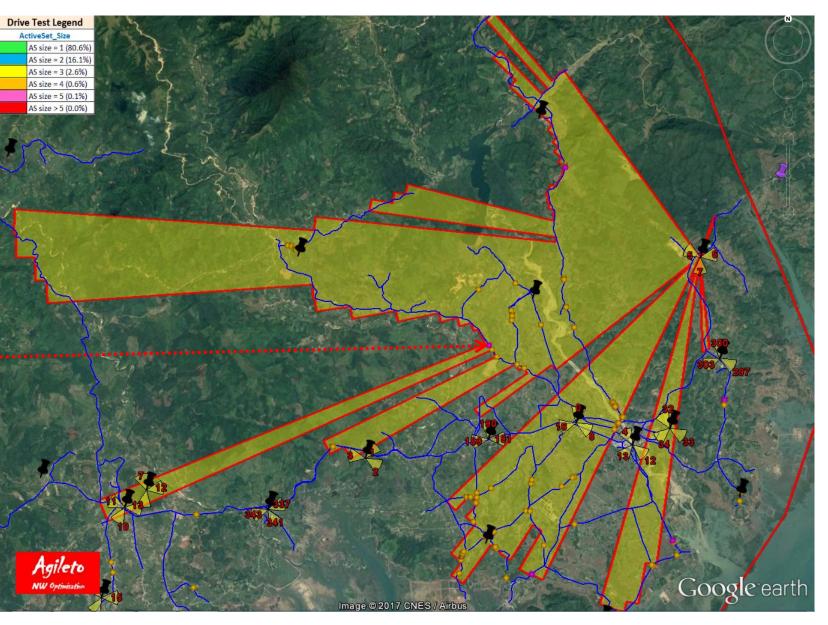
PSC = 5
Sector_ID = 1
Azimuth = 300
Ant_Height = 39
El_Tilt = 2 => proposed New El_Tilt = 3
Mec_Tilt = 2

Pt_nr = 8210

Time_Stamp = 10:04:01.130

ActiveSet_Size = 5 MaxLink_Dist=5.4Km

1) 3G-DHA011M11-QNH/32/-14.0/-93.9


2) 3G-TYN005M11-QNH/1/-14.1/-94.1

3) 3G-DHA010M11-QNH/0/-14.1/-94.1

4) 3G-DHA008M11-QNH/190/-14.7/-94.7

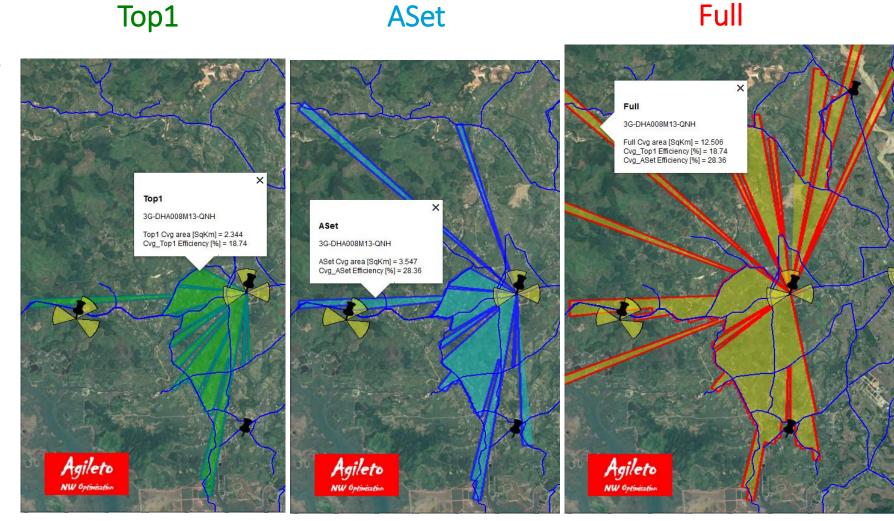
5) 3G-HHA001M11-QNH/5/-15.2/-95.2

Top1_SC = 32 Top1_EcNo = -13.97 Top1_RSCP = -93.94501

Coverage efficiency

Coverage area vs Coverage efficiency

Coverage areas: Top1/ASet/Full:


(for the selected cell 3G-DHA008M13-QNH)

- Area where the cell is detected as the best server (Top1) (green border): Top1 Cvg area = 2.344 km²
- Area where the cell is detected into Active Set range of 3dB (blue border): ASet Cvg area = 3.547 km²
- Area where the cell is detected in Full Coverage (red border): Full Cvg area = 12.506 km²

Coverage Efficiency: Top1/ASet:

<u>Definition:</u> Cvg Efficiency [Top1 or ASet] = [Top1 or Aset] Cvg Area / Full Cvg Area

- Coverage efficiency [Top1] = 18.74%(2.344 / 12.506)
- Coverage efficiency [ASet] = 28.36%(3.547 / 12.506)

Coverage area vs Coverage efficiency

- Coverage efficiency of one cell is an Agileto concept presenting the ratio between the specific coverage area of one cell (seen as Top1 – TopX) and its full (total) coverage area where the cell has been detected during the drive test.
- According with the cell position related to the best cell (Top1), there are mainly two interesting coverage areas efficiency, as following:
 - 1) Coverage Top1 efficiency
 - 2) Coverage ASet (Active Set) efficiency
- The values of the coverage areas efficiency may provide a good indication if a cell is a polluter or it has a lack of coverage – see some examples on the right side for several cells.
- The line in pink background (right side) was detailed into the previous slide as an example.

Google Earth cells coverage areas representations and the related spreadsheet containing all the cells belonging to the cluster are attached for further investigation.

Cell_Name	Cell_ID	Coverage Top1	Coverage ASet	Coverage All		Cvg_ASet Efficiency
_	-	[SqKm]	[SqKm]	[SqKm]	[%]	[%]
3G-TYN018M11-QNH	1301 12471	2.336	8.043	19.714	11.85	40.8
3G-TYN018M12-QNH	1301 12472	2.056	3.536	15.187	13.54	23.28
3G-TYN018M13-QNH	1301 12473	1.98	2.412	15.602	12.69	15.46
3G-TYN024M11-QNH	1301 12811	2.445	3.299	13.898	17.59	23.74
3G-TYN024M12-QNH	1301 12812	5	20.046	32.508	15.38	61.66
3G-TYN024M13-QNH	1301 12813	1.143	1.407	9.41	12.15	14.95
3G-DHA008M11-QNH	1301 12491	8.236	10.079	17.055	48.29	59.09
3G-DHA008M12-QNH	1301 12492	6.085	13.048	32.229	18.88	40.49
3G-DHA008M13-QNH	1301 12493	2.344	3.547	12.506	18.74	28.36
3G-HHA001M11-QNH	1301 10771	39.854	47.569	66.086	60.31	71.98
3G-HHA001M12-QNH	1301 10772	0.629	0.629	8.611	7.3	7.31
3G-HHA001M13-QNH	1301 10773	0.298	1.504	18.55	1.61	8.11
3G-TYN005M11-QNH	1301 10871	10.122	12.029	23.052	43.91	52.18
3G-TYN005M12-QNH	1301 10872	10.012	14.137	28.955	34.58	48.82
3G-TYN005M13-QNH	1301 10873	0.546	0.675	13.278	4.11	5.09
3G-TYN012M11-QNH	1301 10881	6.309	6.548	9.291	67.91	70.48
3G-TYN012M12-QNH	1301 10882	0.194	0.475	2.024	9.59	23.46
3G-TYN012M13-QNH	1301 10883	1.737	1.975	3.678	47.22	53.69
3G-TYN014M11-QNH	1301 10901	17.273	18.241	32.174	53.69	56.69
3G-TYN014M12-QNH	1301 10902	11.623	14.55	42.745	27.19	34.04
3G-TYN014M13-QNH	1301 10903	0.092	0.092	12.682	0.72	0.72
3G-DHA009M11-QNH	1301 12521	3.353	3.579	15.618	21.47	22.92

Over shooter cells

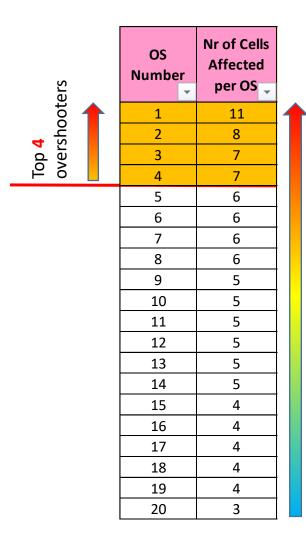
Cluster DT analysis: Over-shooters

Top 4 overshooters

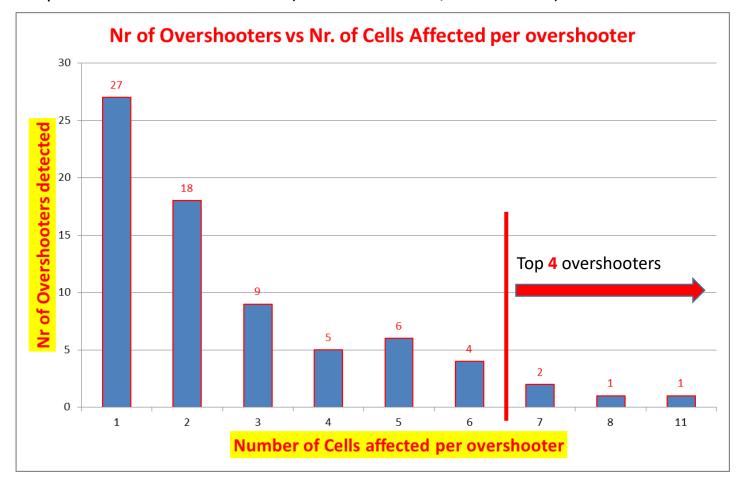
The table on the right side presents the **Overshooters** (OS) cells automatically detected by Agileto tool during the drive test post-processing and analysis of the input data.

This table is sorted in descending order from the worst overshooter cell - based on the number of affected/ polluted cells - to the last important detected.

The full table containing all the details concerning all the overshooters cells detected during the drive test together with their representation in Google Earth are provided as attachments to this report.


This section will present screenshots with detailed representation of the affected cells for the first worst **Top 4** overshooters detected. The other overshooters detected may be investigated - case by case - on Google Earth by using the full Google Earth package (files) provided for multiple topics (Top1/Full coverage, Coverage areas, Overshooters, etc) in order to classify if further actions are required.

<u>**Obs**</u>: Due to the very low number of the 3G cells existing on F1 frequency layer on this cluster it is not expected to get many overshooters (which affect an important nr. of cells). This assumption is conformed by the table on the right side.


Top Nr. of Worst overshooters (≥ 7 affected cells/overshooter): 4

OS Number	Nr of Cells Affected per OS	OS RNC (Overshooter)	OS LocalCID	Overshooter CellName	OS SC	Region Overshooter
1	11	RN1301E	130110653	3G-MCI048M13-QNH	315	Cluster_QNH_12
2	8	RN1301E	130112202	3G-MCI009M12-QNH	465	Cluster_QNH_12
3	7	RN1301E	130110301	3G-BLU003M11-QNH	473	Cluster_QNH_08
4	7	RN1301E	130110802	3G-DHA012M12-QNH	12	Cluster_QNH_07
5	6	RN1301E	130112802	3G-DHA010M12-QNH	8	Cluster_QNH_07
6	6	RN1301E	130112453	3G-MCI026M13-QNH	167	Cluster_QNH_12
7	6	RN1301E	130112663	3G-MCI033M13-QNH	313	Cluster_QNH_11
8	6	RN1301E	130110773	3G-HHA001M13-QNH	7	Cluster_QNH_07
9	5	RN1301E	130112323	3G-MCI018M13-QNH	175	Cluster_QNH_12
10	5	RN1301E	130110353	3G-TYN008M13-QNH	112	Cluster_QNH_06
11	5	RN1301E	130112183	3G-MCI007M13-QNH	458	Cluster_QNH_12
12	5	RN1301E	130112333	3G-MCI019M13-QNH	367	Cluster_QNH_12
13	5	RN1301E	130112153	3G-MCI004M13-QNH	439	Cluster_QNH_12
14	5	RN1301E	130110533	3G-HHA017M13-QNH	386	Cluster_QNH_09
15	4	RN1301E	130110351	3G-TYN008M11-QNH	110	Cluster_QNH_06
16	4	RN1301E	130112392	3G-TYN016M12-QNH	123	Cluster_QNH_06
17	4	RN1301E	130110431	3G-TYN004M11-QNH	107	Cluster_QNH_06
18	4	RN1301E	130112372	3G-TYN015M12-QNH	120	Cluster_QNH_06
19	4	RN1301E	130110352	3G-TYN008M12-QNH	111	Cluster_QNH_06
20	3	RN1301E	130112471	3G-TYN018M11-QNH	337	Cluster_QNH_07

Cluster DT analysis: Over-shooters

Top Nr. of Worst overshooters (≥ 7 affected cells/overshooter): 4

> Over-shooter cell:

3G-MCI048M13-QNH

(automatically detected by Agileto)

• Nr. of affected cells: 11

The green lines are links between the overshooter cell and all its affected cells.

At the edge of each line is presented the order of the affected cell per overshooter based on the number of occurrences detected during the drive test -> Ex: 1[7].

3G-MCI048M13-QNH

Cell Code = W130110653 31

PSC = 315

UARFCN = 10788

LocalCID = 130110653

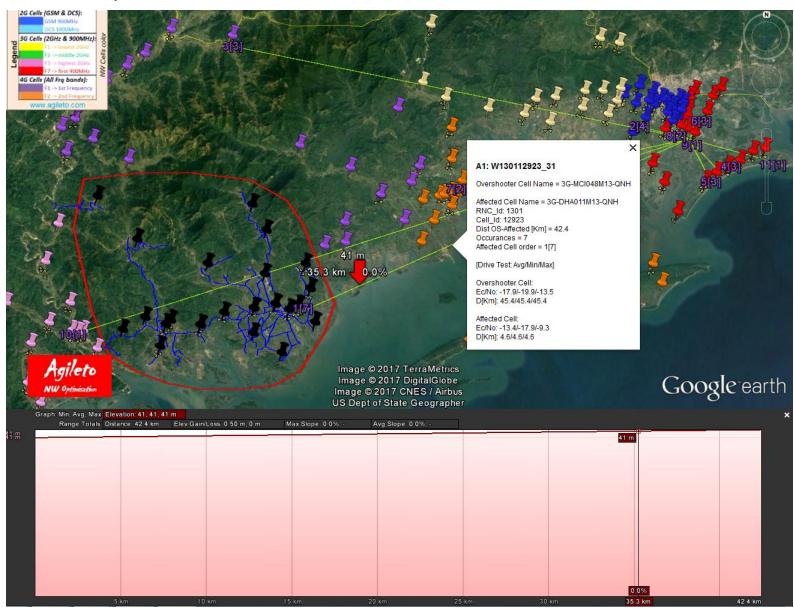
Sector ID = 3

Azimuth = 290

Ant_Height = 39

El Tilt = 2

Mec Tilt = 4


Cluster = Cluster QNH 12

LAC = 13019

RNC Name = RN1301E

RNC Id = 1301

Cell Id = 10653

> Over-shooter cell:

3G-MCI009M12-QNH

(automatically detected by Agileto)

Nr. of affected cells: 8

The green lines are links between the overshooter cell and all its affected cells.

At the edge of each line is presented the order of the affected cell per overshooter based on the number of occurrences detected during the drive test.

3G-MCI009M12-QNH

Cell Code = W130112202 21

PSC = 465

UARFCN = 10788

LocalCID = 130112202

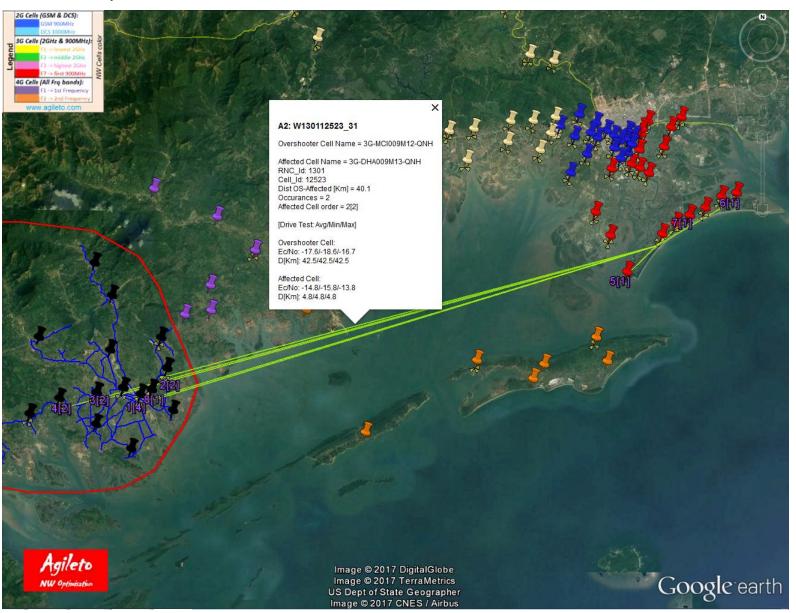
Sector ID = 2

Azimuth = 220

Ant Height = 25

El Tilt = 2

Mec Tilt = 0


Cluster = Cluster QNH 12

LAC = 13019

RNC Name = RN1301E

RNC Id = 1301

Cell Id = 12202

46

> Over-shooter cell:

3G-BLU003M11-QNH

(automatically detected by Agileto)

Nr. of affected cells: 7

The green lines are links between the overshooter cell and all its affected cells.

At the edge of each line is presented the order of the affected cell per overshooter based on the number of occurrences detected during the drive test.

3G-BLU003M11-QNH

Cell Code = W130110301 11

PSC = 473

UARFCN = 10788

LocalCID = 130110301

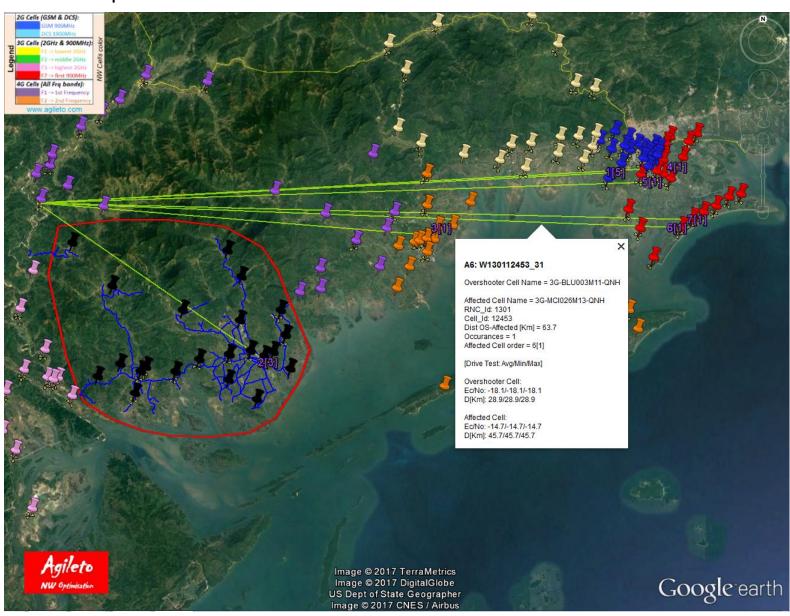
Sector_ID = 1

Azimuth = 340

Ant_Height = 36

El Tilt = 3

Mec Tilt = 1


Cluster = Cluster_QNH_08

LAC = 13019

RNC Name = RN1301E

RNC Id = 1301

Cell Id = 10301

➤ Over-shooter cell:

3G-DHA012M12-QNH

(automatically detected by Agileto)

Nr. of affected cells: 7

The green lines are links between the overshooter cell and all its affected cells.

At the edge of each line is presented the order of the affected cell per overshooter based on the number of occurrences detected during the drive test.

3G-DHA012M12-QNH

Cell Code = W130110802 21

PSC = 12

UARFCN = 10788

LocalCID = 130110802

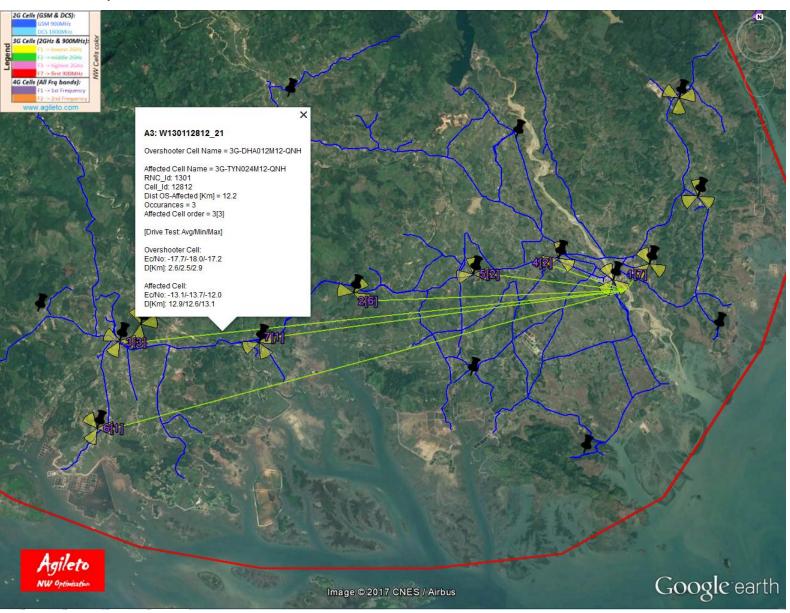
Sector ID = 2

Azimuth = 130

Ant_Height = 30

El Tilt = 4

Mec Tilt = 0


Cluster = Cluster_QNH_07

LAC = 13019

RNC Name = RN1301E

RNC Id = 1301

Cell_Id = 10802

Missing Neighbors:

- 1) IntraFq
- 2) InterFq
- 3) InterRAT

Neighbors audit and optimization analysis have been performed based on the Drive Test input data and the results have been compared with the neighbors declarations detected into OMC/OSS snapshot/dump files.

The complete neighbor results (Detected/Missing/Not Detected) provided by Agileto tool after post-processing the drive test input data are provided as attachments to this report, as following: IntraFreq: **3G3G_F1F1**, InterFreq: **3G3G_F1F2** + **3G3G_F1F7**, InterRAT: **3G2G_F1GSM**

There are provided as well the Google Earth files containing the neighbors representation where the neighbors results from the tabular format may be visualized in Google Earth environment for supplementary checking if desired (missing neighbors are represented with red).

Supplementary, the simulation movie along the drive test route representing the radio links between each drive test measurement point and all the Cells from ASet is provided (where the missing neighbors are provided with red colors) an it may run in Google Earth (GE) environment as so called "Tour". If desired, this movie may be accessed in GE and used like an ordinary movie with Play/Pause/FastForward, etc in order to arrive quickly to investigate the desired area around a specific timestamp.

Missing Neighbors detection (automatic)

An example of the **3G3G_F1F1 neighbors** case, detected & generated by Agileto is displayed on the right side, as following:

- Missing neighbors (# 4)
- Detected (Maintained) neighbors (# 9)
- Detected (LI = Low Importance) (# 2)
- Missing LI (Low Importance) (#19)
- Not Detected neighbors (# 6)

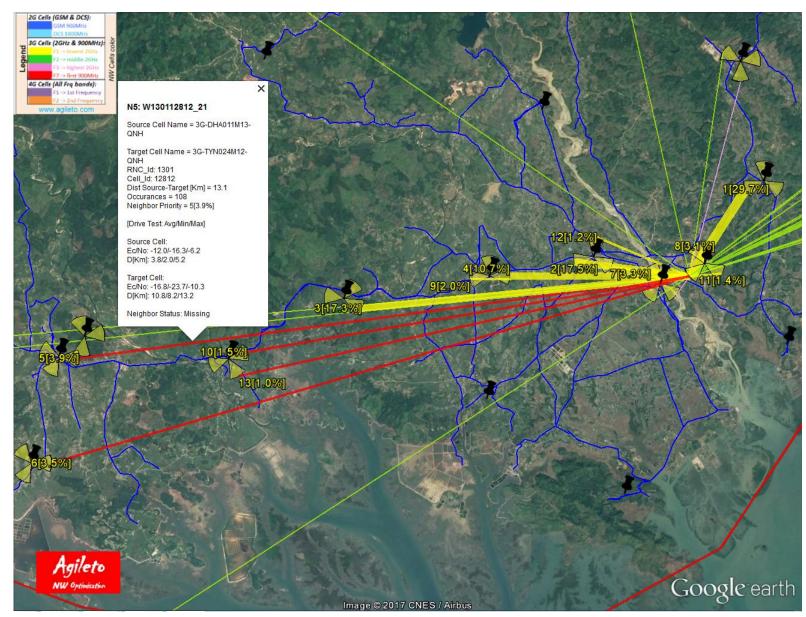
Obs.

The optimization results have considered the minimum 'weight' related to the Nr. of occurrences Source-Target as to be > 1%.

All cases which do not meet the 'weight' criteria are provided with 'negative' priority which means NO neighbor proposition.

Source RNC	Source LocalCID	Source CellName	Target RNC	Target LocalCID	Target CellName	Distance Source- Target Cells [Km]	Nr of Occurances	Nr of Occurances [%]	Priority detected	Neighbor status	Existing Cells Source + Target Validatio	Region Cell Source	Region Cell Target
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130112523	3G-DHA009M13-QNH	2.05	832	29.68%	1	Detected	Validated	Cluster QNH 07	Cluster QNH 07
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130112803	3G-DHA010M13-QNH	2.24	491	17.52%	2	Detected	Validated	Cluster_QNH_07	Cluster_QNH_07
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130110872	3G-TYN005M12-QNH	7.27	485	17.30%	3	Detected	Validated	Cluster QNH 07	Cluster QNH 07
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130112492	3G-DHA008M12-QNH	4.32	299	10.67%	4	Detected	Validated	Cluster QNH 07	Cluster QNH 07
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130112812	3G-TYN024M12-QNH	13.10	108	3.85%	5	Missing	Validated	Cluster QNH 07	Cluster QNH 07
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130110902	3G-TYN014M12-QNH	14.10	97	3.46%		Missing	Validated	Cluster QNH 07	Cluster QNH 07
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130112802	3G-DHA010M12-QNH	2.24	92	3.28%	7	Detected	Validated	Cluster QNH 07	Cluster QNH 07
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130112921	3G-DHA011M11-QNH	0.00	86	3.07%	8	Detected	Validated	Cluster QNH 07	Cluster QNH 07
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130112493	3G-DHA008M13-QNH	4.32	56	2.00%	9	Detected	Validated	Cluster_QNH_07	Cluster_QNH_07
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130112471	3G-TYN018M11-QNH	9.75	42	1.50%	10	Missing	Validated	Cluster QNH 07	Cluster QNH 07
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130112922	3G-DHA011M12-QNH	0.00	38	1.36%	11	Detected	Validated	Cluster_QNH_07	Cluster_QNH_07
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130112801	3G-DHA010M11-QNH	2.24	34	1.21%	12	Detected	Validated	Cluster_QNH_07	Cluster_QNH_07
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130112472	3G-TYN018M12-QNH	9.75	29	1.03%	13	Missing	Validated	Cluster_QNH_07	Cluster_QNH_07
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130110771	3G-HHA001M11-QNH	4.13	15	0.54%	-14	Missing LI	Validated	Cluster_QNH_07	Cluster_QNH_07
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130112183	3G-MCI007M13-QNH	44.18	12	0.43%	-15	Missing LI	Validated	Cluster_QNH_07	Cluster_QNH_12
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130110252	3G-BLU002M12-QNH	27.17	12	0.43%	-16	Missing LI	Validated	Cluster_QNH_07	Cluster_QNH_08
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130110533	3G-HHA017M13-QNH	17.91	12	0.43%	-17	Missing LI	Validated	Cluster_QNH_07	Cluster_QNH_09
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130112433	3G-MCI024M13-QNH	38.65	9	0.32%	-18	Missing LI	Validated	Cluster_QNH_07	Cluster_QNH_11
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130110802	3G-DHA012M12-QNH	0.97	7	0.25%	-19	Detected	Validated	Cluster_QNH_07	Cluster_QNH_07
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130112333	3G-MCI019M13-QNH	41.40	7	0.25%	-20	Missing LI	Validated	Cluster_QNH_07	Cluster_QNH_12
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130110653	3G-MCI048M13-QNH	42.35	7	0.25%	-21	Missing LI	Validated	Cluster_QNH_07	Cluster_QNH_12
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130112453	3G-MCI026M13-QNH	42.98	6	0.21%	-22	Missing LI	Validated	Cluster_QNH_07	Cluster_QNH_12
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130110773	3G-HHA001M13-QNH	4.13	5	0.18%	-23	Detected	Validated	Cluster_QNH_07	Cluster_QNH_07
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130112413	3G-HHA004M13-QNH	20.16	4	0.14%	-24	Missing LI	Validated	Cluster_QNH_07	Cluster_QNH_09
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130110351	3G-TYN008M11-QNH	22.26	4	0.14%	-25	Missing LI	Validated	Cluster_QNH_07	Cluster_QNH_06
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130112202	3G-MCI009M12-QNH	41.69	4	0.14%	-26	Missing LI	Validated	Cluster_QNH_07	Cluster_QNH_12
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130110301	3G-BLU003M11-QNH	27.21	3	0.11%	-27	Missing LI	Validated	Cluster_QNH_07	Cluster_QNH_08
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130112663	3G-MCI033M13-QNH	40.84	1	0.04%	-28	Missing LI	Validated	Cluster_QNH_07	Cluster_QNH_11
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130112273	3G-MCI015M13-QNH	44.29	1	0.04%	-29	Missing LI	Validated	Cluster_QNH_07	Cluster_QNH_12
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130112482	3G-TYN019M12-QNH	28.10	1	0.04%	-30	Missing LI	Validated	Cluster_QNH_07	Cluster_QNH_06
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130110352	3G-TYN008M12-QNH	22.26	1	0.04%	-31	Missing LI	Validated	Cluster_QNH_07	Cluster_QNH_06
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130112323	3G-MCI018M13-QNH	43.14	1	0.04%	-32	Missing LI	Validated	Cluster_QNH_07	Cluster_QNH_12
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130112643	3G-MCI031M13-QNH	35.01	1	0.04%	-33	Missing LI	Validated	Cluster_QNH_07	Cluster_QNH_10
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130112153	3G-MCI004M13-QNH	41.87	1	0.04%	-34	Missing LI	Validated	Cluster_QNH_07	Cluster_QNH_12
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130112491	3G-DHA008M11-QNH	4.32				NotDetected	Existing	Cluster_QNH_07	Cluster_QNH_07
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130112521	3G-DHA009M11-QNH	2.05				NotDetected	Existing	Cluster_QNH_07	Cluster_QNH_07
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130112522	3G-DHA009M12-QNH	2.05				NotDetected	Existing	Cluster_QNH_07	Cluster_QNH_07
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130110801	3G-DHA012M11-QNH	0.97				NotDetected	Existing	Cluster_QNH_07	Cluster_QNH_07
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130110803	3G-DHA012M13-QNH	0.97				NotDetected	Existing	Cluster_QNH_07	Cluster_QNH_07
RN1301E	130112923	3G-DHA011M13-QNH	RN1301E	130110871	3G-TYN005M11-QNH	7.27				NotDetected	Existing	Cluster_QNH_07	Cluster_QNH_07

IntraFr Neighbors optimization (example) -> F1 to F1


Total missing neighbors 3G3G_F1F1: 61

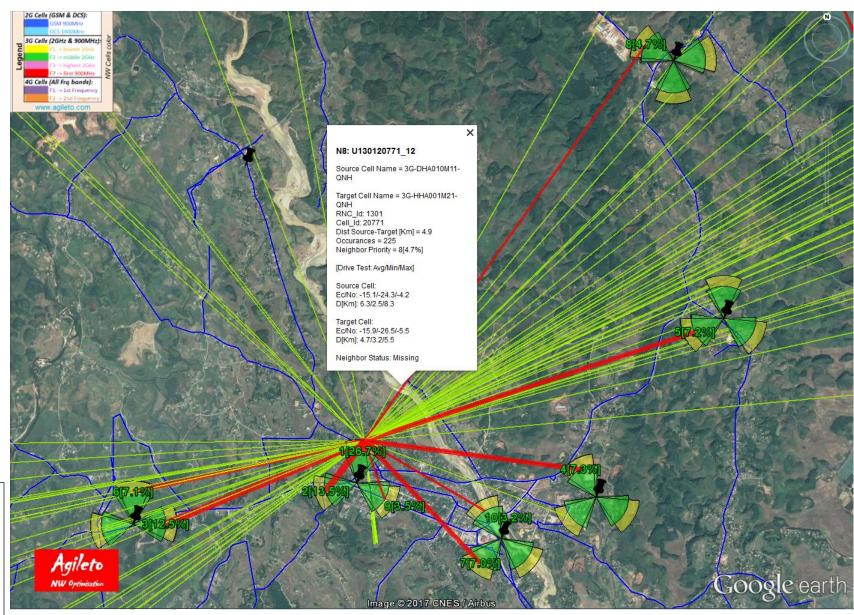
- The missing neighbors relations are presented with red lines
- The maintained neighbors relations are presented with yellow lines.
- The pink lines are presenting the existing neighbors declarations which are NOT meeting the weight criteria (1%).
- The green lines are presenting potential new neighbors declarations but which do not meet the minimum weight criteria (1% on our case).

Obs. Each neighbor line is presenting at the edge the priority proposal and the relative contribution [%] detected during the drive test.

Example Cell: 3G-DHA011M13-QNH

NB_Proposals: 13
NB_Maintained: 9
NB_Missing: 4
NB_Declared_LI: 2
NB_Missing_LI: 19
NB_Not_Detected: 6

InterFr Neighbors optimization (example) -> F1 to F2


Total missing neighbors 3G3G_F1F2: 310

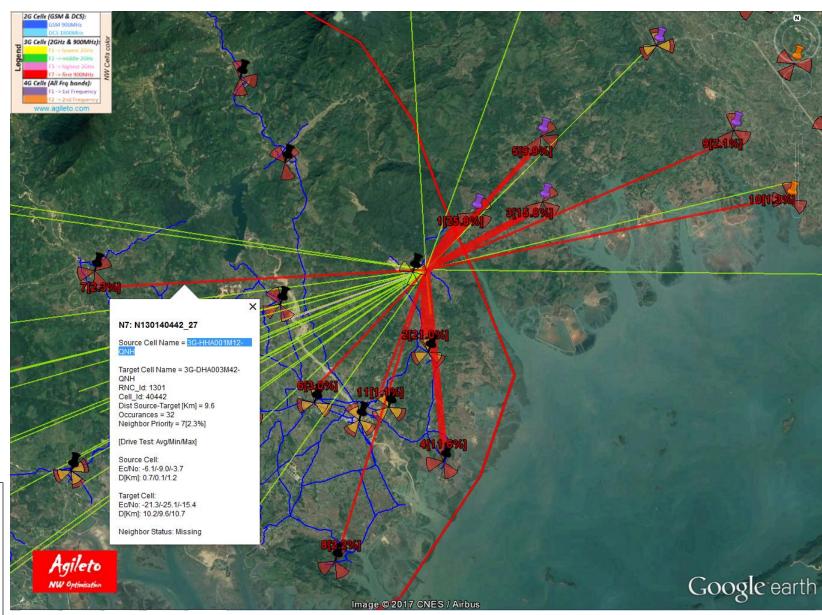
- The missing neighbors relations are presented with red lines
- The maintained neighbors relations are presented with green lines.
- The pink lines are presenting the existing neighbors declarations which are NOT meeting the weight criteria (1%).
- The light green lines (very thin) are presenting potential new neighbors declarations but which do not meet the minimum weight criteria (1% on our case).

Obs. Each neighbor line is presenting at the edge the priority proposal and the relative contribution [%] detected during the drive test.

Example Cell: 3G-DHA010M11-QNH

NB_Proposals: 10
NB_Maintained: 0
NB_Missing: 10
NB_Declared_LI: 0
NB_Missing_LI: 122
NB_Not_Detected: 0

InterFr Neighbors optimization (example) -> F1 to F7


Total missing neighbors 3G3G_F1F7: 53

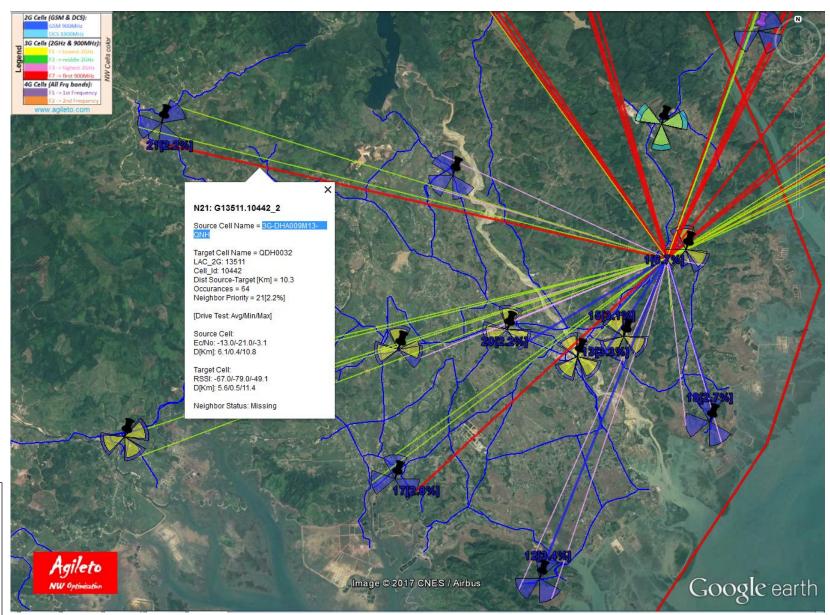
- The missing neighbors relations are presented with red lines
- The maintained neighbors relations are presented with brown lines.
- The pink lines are presenting the existing neighbors declarations which are NOT meeting the weight criteria (1%).
- The green lines are presenting potential new neighbors declarations but which do not meet the minimum weight criteria (1% on our case).

Obs. Each neighbor line is presenting at the edge the priority proposal and the relative contribution [%] detected during the drive test.

Example Cell: 3G-HHA001M12-QNH

NB_Proposals: 11
NB_Maintained: 5
NB_Missing: 6
NB_Declared_LI: 1
NB_Missing_LI: 36
NB_Not Detected: 8

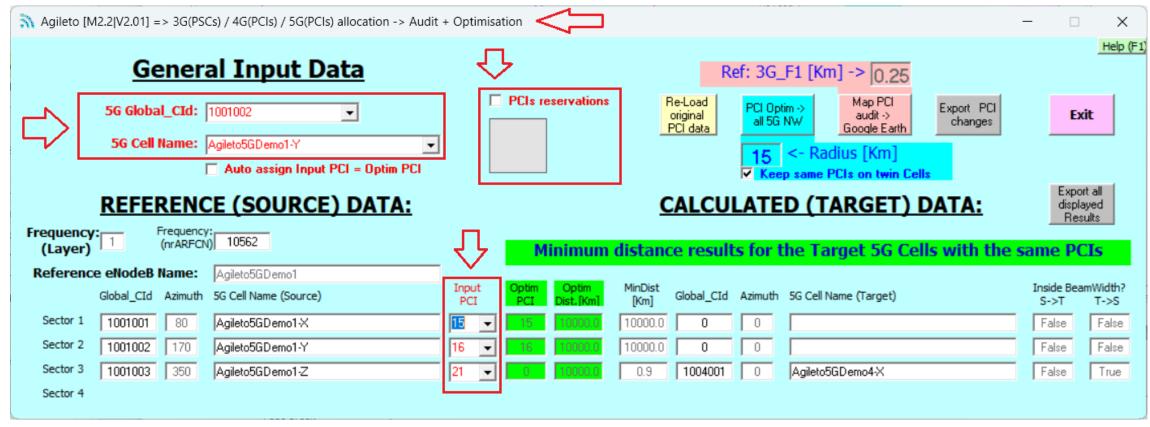
InterRAT Neighbors optimization (example) -> 3G_F1 to 2G


Total missing neighbors 3G2G_F1GSM: 353

- The missing neighbors relations are presented with red lines
- The maintained neighbors relations are presented with blue lines.
- The pink lines are presenting the existing neighbors declarations which are NOT meeting the weight criteria (2%).
- The green lines are presenting potential new neighbors declarations but which do not meet the minimum weight criteria (2% on our case).

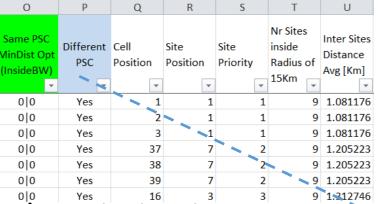
Obs. Each neighbor line is presenting at the edge the priority proposal and the relative contribution [%] detected during the drive test.

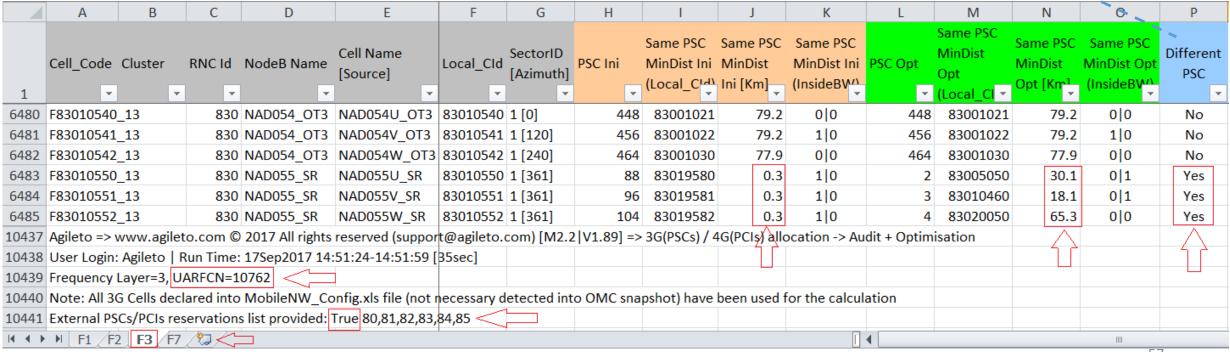
Example Cell: 3G-DHA009M13-QNH


NB_Proposals: 23
NB_Maintained: 7
NB_Missing: 16
NB_Declared_LI: 15
NB_Missing_LI: 22
NB_Not_Detected: 6

PSC/PCI Audit & Optimization

PSCs/PCIs Optimization proposal provided by Agileto


Agileto dedicated module (M2.2) provides the optimum change value for the wrong PSCs cases detected during the drive test analysis by providing as input just the Cell Name for the desired 3G Cell which need to change its PSC.


On this section will be presented the cases automatically detected by Agileto as the 'Wrong PSC allocation' during the drive test analysis and there will be provided the new PSCs proposals in order to avoid important interference.

PSC Audit & Optimization provided by Agileto

Example of the 3G (PSCs) Allocation and Optimisation at Network level

57

PSCs wrong planning detected & optimized by Agileto

		Cells sharing	the same PSC	Cells PSCs to be changed			
Case Number	Common PSC	Cell 1	Cell 2	Cell Change_1	New PSC_1		
1	12	3G-DHA012M12-QNH	3G-TYN012M12-QNH	3G-TYN012M12-QNH	333		
2	13	3G-DHA012M13-QNH	3G-TYN012M13-QNH	3G-TYN012M13-QNH	334		
3	7	3G-TYN012M11-QNH	3G-HHA001M13-QNH	3G-HHA001M13-QNH	320		

Above there are presented the cells detected during the drive test analysis with the 'Wrong PSCs planning allocation' meaning that two different cells which share the same PSC may be declared as neighbors to a specific source cell (and therefore a conflict may occur).

Two of the cases displayed on the right side are presented in Google Earth environment (furthermore on this section) where the cells detected in conflict by sharing the same PSC are linked together with a red line while each one is linked by the source cell with a yellow line.

The entire table presented on the right side (*.xls) together with the Google Earth package presenting the "WrongPlanPSC" detected during the drive test are attached to this report for the future reference.

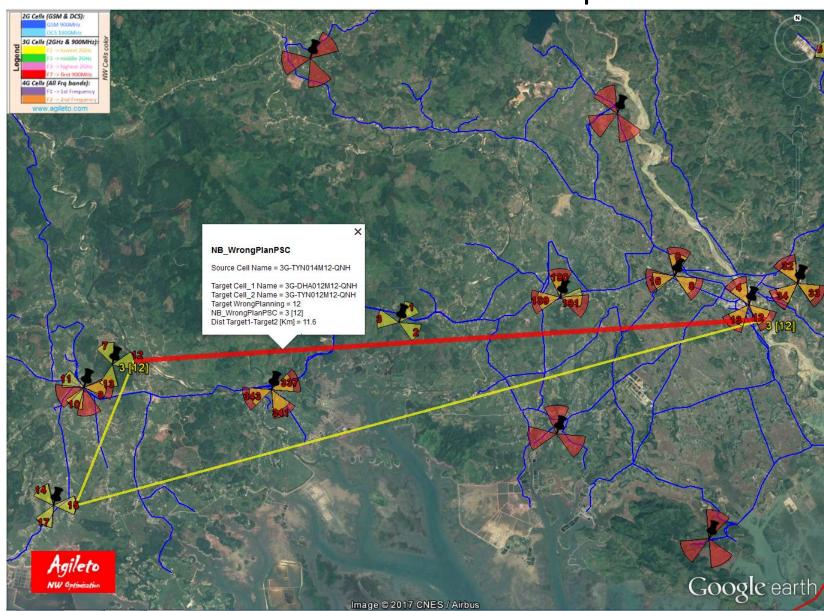
On the right side there are presented the PSC changes proposals for the selected cells (detected to have PSC in conflict) after using Agileto module M2.2 by getting the new optimum PSCs values. => Total = 3 PSCs changes.

Wrong PSC allocation detection & optimisation

Case of wrong PSC detected:

PSC = **12**

Two cells are sharing the same PSC:


Cell 1: 3G-DHA012M12-QNH Cell 2: 3G-TYN012M12-QNH

Due to the negative impact on the network performance it is recommended to change the PSC for one cell in order to avoid possible interference which may degrade important KPIs like CSSR and/or CDR.

Based on Agileto module M2.2 we get the optimum new PSC value:

Cell change: 3G-TYN012M12-QNH

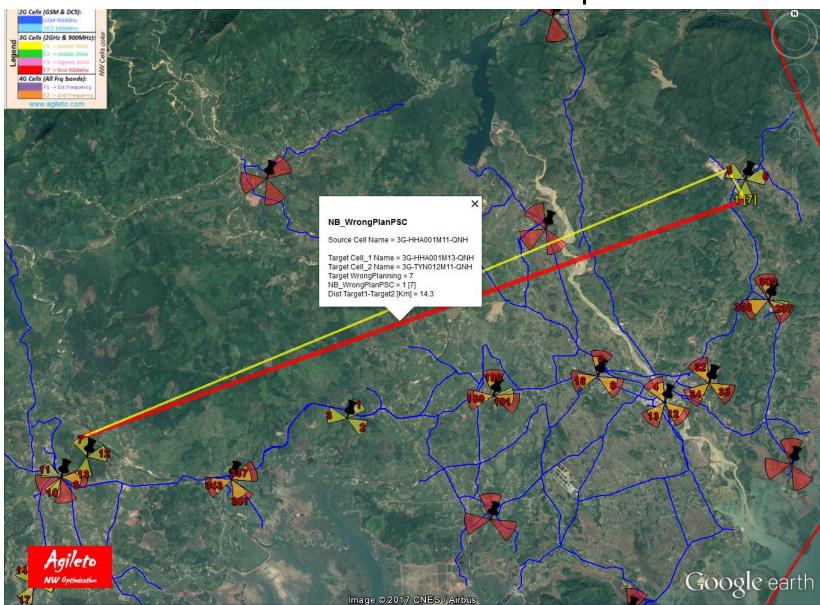
New PSC: **333**

Wrong PSC allocation detection & optimisation

Case of wrong PSC detected:

PSC = 7

Two cells are sharing the same PSC:


Cell 1: 3G-HHA001M13-QNH Cell 2: 3G-TYN012M11-QNH

Due to the negative impact on the network performance it is recommended to change the PSC for one cell in order to avoid possible interference which may degrade important KPIs like CSSR and/or CDR.

Based on Agileto module M2.2 we get the optimum new PSC value:

Cell change: 3G-HHA001M13-QNH

New PSC: **320**

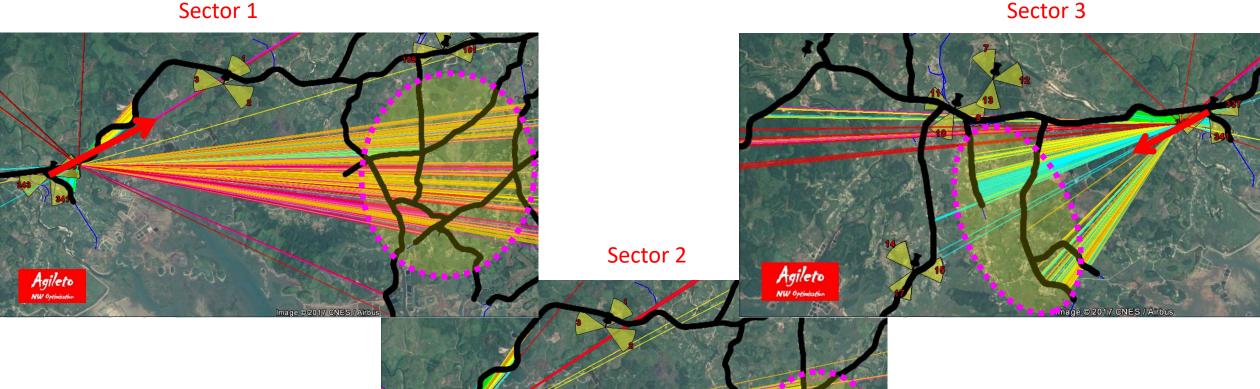
Cross Feeders Detection

Automatic cross feeders detection

After processing the drive test (DT) input data Agileto tool provides automatically analysis regarding the cross sectors/feeders detection based on the following elements:

- Cells geographically position (Lat/Long);
- Cells antennae's azimuth;
- DT Measurement point positions (Lat/Long) where the cells has been detected.

Based on automatically analysis there are detected how many points [%] are detected inside the antennae's beamwidth (Good) and how many points are detected outside (Bad). If the nr. of 'Bad' points is greater than the nr. of 'Good' points it is flagged like having a Cross Sector (TRUE). This analysis is performed for two cases representing the situations where the cell was detected in **Full** coverage and the situations where the cell was detected as **Top1**.


On the right side it is presented this output table concerning the 'CrossSector' analysis where are emphasized with red color two sites which will be presented in details on the next slides by presenting their full coverage points for each sector.

Site: **SR-TYN018M-QNH** => To be verified the Sectors 1 and 2.

Cell_Name	Azimuth	Cvg All Pts	Cvg PtsGood [%]	Cvg PtsBad [%]	CrossSect or CvgAll	Top1 Pts	Top1 PtsGood [%]	Top PtsBad [%]	CrossSect or Top1
3G-DHA011M12-QNH	120	738	82.38	17.62	FALSE	449	100	0	FALSE
3G-DHA011M13-QNH	230	4029	94.61	5.39	FALSE	2689	98.92	1.08	FALSE
3G-TYN018M11-QNH	70	909	86.58	13.42	FALSE	55	63.64	36.36	FALSE
3G-TYN018M12-QNH	150	841	32.46	67.54	TRUE	229	20.96	79.04	TRUE
3G-TYN018M13-QNH	250	684	84.94	15.06	FALSE	278	98.56	1.44	FALSE
3G-TYN024M11-QNH	295	1109	88.82	11.18	FALSE	475	100	0	FALSE
3G-TYN024M12-QNH	95	1295	93.13	6.87	FALSE	149	98.66	1.34	FALSE
3G-TYN024M13-QNH	210	804	62.19	37.81	FALSE	144	97.92	2.08	FALSE
3G-DHA008M11-QNH	0	1450	90.62	9.38	FALSE	513	97.66	2.34	FALSE
3G-DHA008M12-QNH	90	3094	68.78	31.22	FALSE	521	96.35	3.65	FALSE
3G-DHA008M13-QNH	260	1624	54.37	45.63	FALSE	612	72.55	27.45	FALSE
3G-HHA001M11-QNH	300	3199	88.34	11.66	FALSE	2103	98.38	1.62	FALSE
3G-HHA001M12-QNH	80	463	87.26	12.74	FALSE	397	98.49	1.51	FALSE
3G-HHA001M13-QNH	180	933	77.17	22.83	FALSE	227	98.24	1.76	FALSE
3G-TYN005M11-QNH	40	1151	90.1	9.9	FALSE	131	94.66	5.34	FALSE
3G-TYN005M12-QNH	120	2810	96.58	3.42	FALSE	1031	100	0	FALSE
3G-TYN005M13-QNH	280	514	91.25	8.75	FALSE	242	100	0	FALSE
3G-TYN012M11-QNH	340	1321	74.41	25.59	FALSE	816	94.49	5.51	FALSE
3G-TYN012M12-QNH	80	397	58.94	41.06	FALSE	31	100	0	FALSE
3G-TYN012M13-QNH	190	922	81.13	18.87	FALSE	405	90.12	9.88	FALSE
3G-TYN014M11-QNH	320	1490	93.96	6.04	FALSE	711	99.86	0.14	FALSE
3G-TYN014M12-QNH	90	1077	88.77	11.23	FALSE	498	97.39	2.61	FALSE
3G-TYN014M13-QNH	210	178	84.83	15.17	FALSE	151	100	0	FALSE
3G-DHA009M11-QNH	0	665	77.14	22.86	FALSE	206	81.55	18.45	FALSE
3G-DHA009M12-QNH	120	267	80.52	19.48	FALSE	130	96.15	3.85	FALSE
3G-DHA009M13-QNH	245	4431	92.24	7.76	FALSE	330	83.03	16.97	FALSE
3G-DHA012M11-QNH	330	1	100	0	FALSE	0			FALSE
3G-DHA012M12-QNH	130	37	48.65	51.35	TRUE	0			FALSE
3G-DHA012M13-QNH	220	4	100	0	FALSE	0			FALSE

Automatic cross feeders detection

Site: SR-TYN018M-QNH

Obs:

There is almost no coverage difference between the sectors 1 and 2 ?!

63

Thank you

Agileto

www.agileto.com

What kind of services are we providing currently?

- Network Optimization services (including roll-out or/and swap) for any mobile networks (2G/3G/4G/5G) from small clusters to large (BSCs/RNCs/TACs) areas;
- Benchmark (between different Mobile Operators, too) on requested drive test metrics;
- Enhanced Agileto PRO Edition license(s) for your own usage;

We are providing for **FREE** our services as POC (Proof Of Concept) for all our new clients so do not hesitate to contact us Today!

Agileto Contact details:

Web site: www.agileto.com

Sales: sales@agileto.com

Support: support@agileto.com

Facebook: https://www.facebook.com/agileto

WhatsApp: <u>+40 773 991 443</u> (Mon-Fri, 8:00-15:00 GMT)

Telegram: https://t.me/agileto and https://t.me/agileto_news

NW Optimisation